Dump fossil fuels for the health of our hearts

Air quality in London on April 3, 2014 fell to a level where it became hard to see normally-visible skyscrapers. Conditions hit a 9/10 risk ranking  thanks to a combination of pollution and dust blown in from the Sahara desert. Tackling such pollution could immediately improve people's health, stresses New York University's George Thurston. Image copyright David Holt, used via Flickr Creative Commons license.

Air quality in London on April 3, 2014 fell to a level where it became hard to see normally-visible skyscrapers. Conditions hit a 9/10 risk ranking thanks to a combination of pollution and dust blown in from the Sahara desert. Tackling such pollution could immediately improve people’s health, stresses New York University’s George Thurston. Image copyright David Holt, used via Flickr Creative Commons license.

Sometimes when I blow my nose and – inevitably – look into my handkerchief, I see that my snot is black. It doesn’t happen when I’m at home, in the small English city of Exeter, only when I’m in London. It’s a clear sign of the extra pollution I’m inhaling when I’m in the capital – one backed up by data published last week by Public Health England. Its striking report says that in 2010 73 deaths per thousand in the London borough of Waltham Forest, where my girlfriend’s sister lives, could be put down to grimy air. For Exeter, the figure was just 42 per 1000. Across the whole of England, pollution killed 25,002 people in 2010, or 56 of every 1000 deaths nationwide.

But wherever you live, air pollution will become even more important as the climate changes, while fighting this scourge could also help the world bring global warming under control. “There’s more than enough rationale for controlling emissions based on the health effects and the benefits that we get as a society from getting off of fossil fuels,” New York University’s George Thurston told me. “Those are the benefits that are going to accrue to the people who do the clean-up – locally and immediately, not fifty years from now.”

Public Health England is trying to draw attention to ‘particulate matter’, or dust, less than 2.5 micrometres in diameter, too small to see with our naked eye. You won’t find this ‘PM2.5’ pollution listed as people’s cause of death – it’s likely to be down as a heart attack or lung cancer. George has run huge studies in the US to help work out exactly how much such dust worsens people’s health. One study for the American Cancer Society followed 1.2 million men and women originally enrolled in 1982. Another, started in 1995, tracked over 500,000 US retirees over the following decade. And he was also a part of a worldwide project that last year showed ‘global particulate matter pollution is a major avoidable risk to the health of humankind’. Read the rest of this entry »

Detailed regional data reduce warming-drought link doubts

Sergio Vicente-Serrano and his team have shown that warming is driving more severe and widespread droughts on the Iberian Peninsula, even in this river plain landscape near Aguilar de Campoo in northern Spain Image Credit: tracX via Flickr Creative Commons license

Sergio Vicente-Serrano and his team have shown that warming is driving more severe and widespread droughts on the Iberian Peninsula, even in this river plain landscape near Aguilar de Campoo in northern Spain Image copyright: tracX, used via Flickr Creative Commons license

Spanish and Portuguese researchers have produced some of the strongest evidence yet that warming climate is making droughts more severe. Sergio Vicente-Serrano from the Pyrenean Institute of Ecology (IPE) in Zaragoza and his colleagues have used detailed data from their countries to overcome uncertainties seen in worldwide studies. They have shown that a local warming of 1.5°C from 1961-2011, and 2.1°C in summer months, and rainfall that has decreased by around a sixth increased drought severity in the region. “Future scenarios in the Iberian Peninsula and southern Europe indicate an increase of temperature even more than 3°C for the 21st century,” Sergio told me. “If we have already observed an important decrease of water resources, you can imagine that in the future water resources in these regions will be at higher risk.”

Air holds and ‘demands’ more water as it gets warmer, which is a fundamental reason for why we might expect both worse droughts and heavier rainfall with climate change. Scientists have already used real-world measurements to look at global changes in drought severity. However, they have disagreed on whether things really have got worse in recent years or not. Sergio stressed that such worldwide research faces important limitations. He emphasised that evapotranspiration – the water released by Earth’s surface and by plants breathing – is important in drought studies. But it has to be worked out from a combination of direct measurements, and the records needed are patchy in areas like Africa or South America.

“I’m very critical of the conclusions of these kinds of global studies, not about the methodology, but the input data,” Sergio said. “The problem is the use of highly uncertain variables. There are problems with precipitation data sets in terms of density of observations. The problems for precipitation are much higher for variables that are necessary to estimate the water demand of the atmosphere. Estimating these kinds of variables with confidence is really difficult. Also, there’s no validation in terms of impact on crop production, stream flows, reservoirs, soil moisture, this information is not available. That’s really the approach that must be followed to determine if drought is increasing in severity and impact.” Read the rest of this entry »

Real-world grounding could cool 21st century outlook

The world's surface air temperature change ("anomaly"), relative to the world's mean temperature of 58° F or 14.5° C, averaged over land and oceans from 1975 to 2008. Inset are two periods of no warming or cooling within this overall warming trend. Copyright 2009 American Geophysical Union. Reproduced/modified by permission of American Geophysical Union.

The world’s surface air temperature change (“anomaly”), relative to the world’s mean temperature of 58° F or 14.5° C, averaged over land and oceans from 1975 to 2008. Inset are two periods of no warming or cooling within this overall warming trend. Copyright 2009 American Geophysical Union. Reproduced/modified by permission of Wiley/American Geophysical Union, see citation below.

Starting climate models from measured data helps simulate the early-2000s global warming hiatus better, and reduces projections for warming through to 2035. Jerry Meehl and Haiyan Teng have compared such ‘initialised’ model runs against more common ‘uninitialised’ ones starting without real-life conditions. The scientists, from the US National Centre for Atmospheric Research (NCAR) in Boulder, Colorado, find initialised runs get closer to modelling that hiatus and surprisingly rapid warming in the 1970s. Using the same approach, admittedly rough 30-year predictions for Earth’s surface air temperature initialised in 2006 are about one-sixth less than uninitialised projections. “We have evidence that if we would have had this methodology in the 1990s, we could have predicted the early-2000s hiatus,” Jerry told me.

The hiatus Jerry and Haiyan studied – an easing off in the rate of global warming since 1998 – is perhaps the aspect of climate change most hotly debated today. But hiatus is a slippery word, whose meaning depends on who is highlighting what points on which graph. Climate skeptics will often infer that it’s evidence that global warming is not a problem, or that it shows we know too little to act on climate change. The UN Intergovernmental Panel on Climate Change puts it in plain numbers: the rate of warming from 1998-2012 was 0.05°C per decade; from 1951 to 2012, it was 0.12°C per decade. “In addition to robust multi-decadal warming, global mean surface temperature exhibits substantial decadal and interannual variability,” it adds.  “Due to natural variability, trends based on short records are very sensitive to the beginning and end dates and do not in general reflect long-term climate trends.”

In a paper published online in the journal Geophysical Research Letters last week, Jerry and Haiyan touch on the current best explanations of the let-up. These include the chilling effect of recent volcano eruptions, but mostly focus on cooling in the Pacific as part of a natural cycle. Called the Interdecadal Pacific Oscillation (IPO), this regular wobble in sea surface temperatures has likely partly masked greenhouse-gas driven warming. The IPO has also been linked to a larger warming than might have been expected from greenhouse gases alone in the 1970s, the NCAR researchers add. Read the rest of this entry »

Renewable energy beats ‘clean coal’ on cost in Australia

A part of the extension of the Snowtown Wind Farm in South Australia that added 90 new 3 megawatt turbines. In South Australia wind farms contribute 27% of annual electricity, notes University of New South Wales' Mark Diesendorf. Photo by David Clarke, used via Flickr Creative Commons license.

A part of the extension of the Snowtown Wind Farm in South Australia that added 90 new 3 megawatt turbines. In South Australia wind farms contribute 27% of annual electricity, notes University of New South Wales’ Mark Diesendorf. Photo by David Clarke, used via Flickr Creative Commons license.

It’s unlikely that fossil fuel power stations that capture and store their CO2 emissions could supply eastern Australia’s electricity more cheaply than renewable energy technologies like solar and wind power. That’s according to a study based on hour-by-hour analysis of electricity demand by Ben Elliston, Iain MacGill and Mark Diesendorf from the University of New South Wales in Sydney. Although renewables are often seen as expensive, these findings highlight that they can be competitive after accounting for the impact of burning coal and gas on our climate. “Our studies, and those conducted by other research groups around the world, find that it is possible to operate reliable national and subnational electricity systems on predominantly renewable energy generated by commercially available technologies and that these systems are affordable,” Mark told me.

Ben is a PhD student, supervised by Iain and Mark, and together the three have sought to answer key questions about renewable energy. Is it possible to supply a whole electricity grid’s needs with these technologies, or are some ‘base-load’ coal or gas power stations needed to fall back on? And if it is possible, would it be affordable?

To answer these questions, Ben designed a computer programme to simulate running an electricity supply system. His program can go through a year’s hourly data on electricity demands, wind and sunshine over the region in a fraction of a second. “Everything else follows from this, provided of course one asks the right questions,” Mark noted.

Over the last two years they have published work exploiting that programme, first showing that it’s possible to reliably supply 100% of eastern Australia’s electricity using renewable energy. Wind and solar power supplied most of the electricity, but output from these technologies varies due to changes in weather. But rather than filling gaps with fossil fuels, they showed existing hydroelectric power stations and gas turbines burning biofuels could be used to meet the grid’s reliability standard. Read the rest of this entry »

Twin rainfall effects strengthen human climate impact case

While existing studies of rainfall changes rely on data collected on land, by switching to satellite data LLNL's Kate Marvel and Céline Bonfils could include changes in rainfall at sea. Image copyright snoboard1010 used via Flickr Creative Commons license.

While existing studies of rainfall changes rely on data collected on land, by switching to satellite data LLNL’s Kate Marvel and Céline Bonfils could include changes in rainfall at sea. Image copyright snoboard1010 used via Flickr Creative Commons license.

The way we humans are affecting the climate is changing rainfall patterns over land and sea, scientists at Lawrence Livermore National Laboratory (LLNL) in California have found. Kate Marvel and Céline Bonfils compared precipitation ‘fingerprints’ in satellite data against what climate models showed would result from actions like adding greenhouse gases to the atmosphere. “Everyone knows that temperatures are rising, but figuring out how that affects other aspects of the climate is tricky,” Kate told me. “We’ve shown that global precipitation is changing in the way climate scientists expect it to. The odds of the observed trends being due to natural climate variability are very low.”

Changes to rain, snow and all the other forms of falling wetness collectively known as precipitation are undeniably important, given their power to bring floods and droughts. Scientists have already shown that, over land, wet areas are getting wetter and dry areas are getting drier. These studies rely on data measured directly on land, reaching back almost a century. The long record gives scientists a lot of data to test, making it easier to tell human influences from the many natural rainfall patterns. Yet Kate and Céline wanted to use satellite data instead. Though these have only been recorded since 1979, each measurement is more reliable, and the satellites also cover the oceans.

“With such a short record, it’s often difficult to identify the ‘signal’ of climate change against the background of completely natural variability,” Kate explained. For example, the wet-gets-wetter, dry-gets-dryer strengthening of the Earth’s water cycle happens because warmer air can hold more water vapour. But that can be caused by the El Niño climate pattern, as well as by increasing greenhouse gases. Our activities can also change how air circulates above the planet, pushing dry regions and storm tracks toward the poles – but so can the La Niña pattern.

Read the rest of this entry »

Temperature patterns produce perplexing Pliocene puzzle

Lafayette College's Kira Lawrence and her teammates have used ocean bed sediment cores, like this one, to produce a 5 million year climate record. © Intergrated Ocean Drilling Program

Lafayette College’s Kira Lawrence and her teammates have used ocean bed sediment cores, like this one, to produce a 5 million year climate record. © Intergrated Ocean Drilling Program

US, UK and Hong Kong Researchers have produce a unique ‘movie’ of climate reaching back 5 million years, by bringing together data drilled from ocean beds. It reveals three important temperature patterns during the warm early part of the Pliocene period that they couldn’t recreate together in climate models using existing explanations. That’s important because scientists hope the Pliocene could help us know what the future of a warmer Earth might be like. And having uncovered another layer to the Pliocene puzzle, team member Kira Lawrence from Lafayette College in Easton, Pennsylvania, underlined the value of finding its solution.

“Our community of scientists think of the Pliocene as though it was about 3°C warmer than modern temperatures with CO2 concentration about where we are right now,” Kira told me. “But we haven’t recognised before that the pattern of temperature was a lot different. If that’s where we’re headed in the not too distant future, if the temperature and precipitation patterns change in that way, we should have some significant things to think about.”

The Pliocene period started 5.3 million years ago, during which primates made important evolutionary steps towards humanity. Since 2000, there has been a climate data explosion reaching back through this era. Around the world, international drilling expeditions have pierced ocean beds kilometres below sea level, reaching hundreds of metres into sediment to bring back ‘core’ samples. Tiny fossils within that rock and mud can tell scientists temperatures through history, which can give climate scientists real data to test their models against.

Read the rest of this entry »

Diving deep into ocean data uncovers ‘missing heat’ treasure

A new ocean reanalysis called ORAS4, here showing the difference between September 2012 sea temperatures and the average for 1989-2009 (not part of the latest study), has helped show that extra heat trapped in the atmosphere by CO2 humans are emitting is buried in the deep ocean. Credit: ECMWF

A new ocean reanalysis called ORAS4, here showing the difference between September 2012 sea temperatures and the average for 1989-2009 (not part of the latest study), has helped show that extra heat trapped in the atmosphere by CO2 humans are emitting is buried in the deep ocean. Credit: ECMWF

A newly-made picture of ocean history has backed a theory that the missing piece of a climate puzzle at the edge of space lies deep in Earth’s waters. The puzzle comes because the amount of heat energy our planet has absorbed should have warmed it more than it seems to have done. But now, using an ocean reanalysis assembled from data gathered from many sources, UK and US researchers have shown especially strong recent warming in oceans below 700m. “We have found some energy buried at depths,” Kevin Trenberth from the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. “We also have a plausible explanation for it related to changes in winds.”

In 2010, Kevin went public over his worries about a budget that didn’t balance. But rather than money, that budget tallies heat energy from the Sun entering the top of the atmosphere against energy the Earth radiates back out into space. Satellite measurements show more energy coming in than leaving, which is what causes global warming. But Kevin noticed that existing measurements showed the world hadn’t warmed as much since 2003 as this budget would suggest.

With over nine-tenths of the surplus energy coming into the Earth going into the sea, the deep ocean has always looked the likeliest hiding place for the missing heat. However, temperature data from those depths is scarce, making the theory hard to prove. Yet, in the years since Kevin pointed out the problem, scientists have gathered some clues to back that explanation. For example, some used a model that includes the complex links between the atmosphere, land, oceans, and sea ice to run five simulations of the 21st century. They found warming slowdowns on the Earth’s surface similar to what has happened in the 2000s, with the heat going into the deep oceans. But even this just underlined the importance of using measurements to see the effect directly. Read the rest of this entry »

Climate change set to bring Western Europe more hurricanes

In January 2009 a cyclone called Klaus, which is shown here and boasted hurricane-force winds, hit France, Spain and Italy. Such conditions could become much more common in Europe by the end of the 21st century, according to Rein Haarsma and his KNMI team. Credit: H de C via Flickr Creative Commons license

In January 2009 a cyclone called Klaus, which is shown here and boasted hurricane-force winds, hit France, Spain and Italy. Such conditions could become much more common in Europe by the end of the 21st century, according to Rein Haarsma and his KNMI team. Credit: H de C via Flickr Creative Commons license

Current once-in-a-century hurricane-force winds may become as much as 25 times as likely in parts of Western Europe at the end of the 21st century. That’s what Rein Haarsma and a team from the Royal Netherlands Meteorological Institute (KNMI) have shown using one of the highest-resolution climate models around today. Their findings spring from a change in where hurricanes will develop that could also affect western North America, though more research is needed to study this. “The statement that the wind climate in Western Europe will not change significantly is questionable,” Rein told me. “Significant changes in wind climate will have consequences for agriculture – the increased winds are during the autumn – infrastructure and coastal defence.”

With Europe so far from the tropical regions where warmth and unstable atmosphere spawns hurricanes, it rarely sees them today. But when hurricane conditions do happen, like the ‘Great Storm’ in 1987, or Hurricane Floyd in 1993, they live long in the memory. The hurricane remnants that sometimes reach Western Europe usually bring a lot of rain, Rein noted, and only occasionally hurricane-force winds.

The warming Arctic is reducing ocean temperature differences that help create Europe’s traditional storms, meaning they pose less of a threat. But recently findings have shown that a warmer atmosphere raises hurricane risks. “Many model simulations suggest that the strength of hurricanes will increase due to climate change,” Rein explains. “The area where hurricanes develop appears to move poleward and the moisture content in a warmer atmosphere will increase. These factors might alter the possibility that these remnants of hurricanes are still strong enough to produce hurricane-force winds.” Read the rest of this entry »

Can we trust climate models?

Scientists use models like the Community Climate System Model (CCSM, shown here) to increase their understanding of the world's climate patterns and learn how they may affect regions around the globe. Credit: PNNL

Scientists use models like the Community Climate System Model (CCSM, shown here) to increase their understanding of the world’s climate patterns and learn how they may affect regions around the globe. Credit: PNNL

Computers crash, freeze, corrupt documents, and otherwise make us swear at them every day. At such moments I briefly blow my own fuse, and my computer becomes my enemy – until I remember it’s revolutionised how I work, communicate and access information. But knowing how easily they can go wrong – and how easily a small, overlooked, mistake in a piece of software can cause unexpected problems later – makes me cautious. That extends to writing this blog, when I often wonder just how much we can rely on the computer models used so widely by scientists studying global warming. So this year I’ve been asking researchers questions like: Why even use models? How can we trust that they’re accurate? How should we understand what they come up with?

These questions go deep into how science works, using evidence from what people see, or experiments we conduct, to build or knock down ideas. The best evidence is directly measured, in as much detail as possible. Today that’s available in some cases, but not all, and we can’t go back in time to get data over the long time periods that might be ideal. For example, this previously limited our understanding of global warming’s effect on tropical cyclones, Bruno Chatenoux from the Global Change and Vulnerability Unit at the United Nations Environment Program in Geneva, Switzerland told me in February. “Formal detection of trends in the existing records is challenged by data quality issues and record length,” he told me. “Model projections suffer less from this, but have other challenges, such as whether they are accurately representing all of the relevant physical processes.”

And while there are a lot of processes to represent, researchers have worked hard to establish them, underlined Xuefeng Cui from Beijing Normal University, China, in July. “Climate models have been developed by groups of scientists to include atmosphere, oceanography, land, biology, chemistry, physics, computing science for about 40 years,” he said. “They have a solid scientific foundation and model the climate system in reasonable resolution.”

Read the rest of this entry »

CO2 casts off shackles to power up Atlantic hurricanes

NOAA's GOES-13 satellite captured this visible image of Hurricane Sandy battering the U.S. East coast on Monday, Oct. 29 at 9:10 am EDT. Sandy's center was about 310 miles south-southeast of New York City. Tropical Storm force winds are about 1,000 miles in diameter, and are set to intensify in the 21st century.  Credit: NASA GOES Project

NOAA’s GOES-13 satellite captured this visible image of Hurricane Sandy battering the U.S. East coast on Monday, Oct. 29 at 9:10 am EDT. Sandy’s center was about 310 miles south-southeast of New York City. Tropical Storm force winds are about 1,000 miles in diameter, and are set to intensify in the 21st century. Credit: NASA GOES Project

Changes in greenhouse gases and other air pollution will likely make Atlantic storms that could hit the Caribbean and Eastern US more intense through this century. That’s according to research from Gabriel Vecchi at the US National Oceanographic and Atmospheric Administration (NOAA) in Princeton, New Jersey, and Gabriele Villarini at the University of Iowa. They’ve found that more greenhouse gases strengthen these storms but other pollutants known as aerosols or particulates, which include soot, do the opposite. Increases in both types of pollution through the 20th century therefore cancelled each other out. But with more recent efforts to limit aerosol pollution succeeding, Atlantic storms now look set to become more destructive. “Both reductions in particulate pollution and increases in greenhouse gases are going to co-operate, we think, to give us more intense hurricanes in the Atlantic,” Gabriel said.

Gabriel has long studied Atlantic storms, and together with Gabriele recently found that how often they happen will likely only increase during the first half of the 21st century. “The number of storms in a season is only part of the story,” Gabriel told me. “A big question for society is the intensity.” So it was natural, he added, to follow on by looking at how strong and long-lasting they are. Scientists have already looked at their intensity for narrow “time-slices”, for example from 1985-2005 and then predicting from 2080 to 2100. “People haven’t explored how we go from the late 20th century to the late 21st century,” Gabriel said.” That’s because to do this research they need complex and very detailed ‘high resolution dynamical’ climate models, which use up scarce time on the world’s most powerful computers. For the same reason, previous studies only look at a few possible scenarios for how much of the greenhouse gas CO2 humans will produce by burning fossil fuels. Read the rest of this entry »

Follow

Get every new post delivered to your Inbox.

Join 160 other followers