Shrinking dairy’s carbon hoofprint

After 10,500 years of farming them, does climate change mean we humans must limit our reliance on cows, or just change how we treat them? Image copyright fishhawk, used via Flickr Creative Commons licence.

After 10,500 years of farming them, does climate change mean we humans must limit our reliance on cows, or just change how we treat them? Image copyright fishhawk, used via Flickr Creative Commons licence.

Whenever I come across cows here in the southwest of the UK, usually placidly munching on a mouthful of grass, they always seem too lovable to be villains. But as we face growing twin challenges of feeding the world and fighting climate change, they’re increasingly getting a bad reputation.

Some scientists highlight reducing how much beef we eat, in particular, as an important step towards future sustainability. They say only about three or four parts in 100 of the energy in livestock feed becomes our food, while the rest is lost as manure, heat, digestive gases and slaughter by-products. Switching to more intensively farmed chicken or pork and plant-based food would be more efficient, the argument goes. It also gives a greater chance to trap carbon from waste material, which might otherwise become planet-warming greenhouse gases, as biochar that can help improve soil fertility.

A couple of years back I put this to Peter and Henri Greig who run my favourite local butchers, Pipers Farm. As they showed us round their farm Peter explained how their Red Ruby cattle can graze Devon moorland that can’t be used for crops, before moving on to pasture. While I still don’t eat a lot of beef for both environmental and health reasons, that seems a good reason for not demonising cows entirely. In fact, a paper in the June 2014 issue of the Journal of Dairy Science highlights previous research that found more grazing land exists, unusable for human food, than cropping land.

We can’t ignore what that promises for feeding the world in the future, but we can’t ignore cows’ greenhouse gas emissions either. However, rather than beef cattle, the new paper’s authors focussed on reducing levels of the potent greenhouse gas methane coming out of the digestive systems of dairy cattle. Joanne Knapp, a consultant who has researched nutrition in ruminant animals like cattle, told me her team’s interest comes in part thanks to its backers: Innovation Center for US Dairy.

Read the rest of this entry »

IPCC: Millions of words on climate change are not enough

The latest IPCC report has highlighted that it's dead certain that the world has warmed, and that it's extremely likely that humans are the main cause. Credit: IPCC

The latest IPCC report has highlighted that it’s dead certain that the world has warmed, and that it’s extremely likely that humans are the main cause. Credit: IPCC

The most recent UN Intergovernmental Panel on Climate Change (IPCC) report saw perhaps the most severe conflict between scientists and politicians in the organisation’s existence. As its name suggests, governments take an active part in the IPCC process, whose latest main findings appeared between September 2013 and May 2014. Debate over what information makes the high-profile ‘Summaries for Policymakers’ is usually intense, but this time three graphs were dropped on politicians’ insistence. I show these graphs later in this blog entry.

At the Transformational Climate Science conference in my home town, Exeter, UK, earlier this month, senior IPCC author Ottmar Edenhofer discussed the ‘battle’ with governments on his part of the report. Another scientist who worked on the report highlighted confidentially to me how unusual the omission was.

To me, it’s more surprising that this hasn’t happened more often, especially when you look more closely at the latest report’s findings. There’s concrete certainty that warming is happening, and it’s extremely likely that humans are the dominant cause, it says. Governments have even – in some cases, begrudgingly – already signed up to temperature and CO2 emission targets reflecting this fact.

The inadequacy of those words is becoming ever more starkly obvious. Ottmar stressed that the emissions levels agreed at the United Nations’ Climate Change Conference in Cancún, Mexico, in November 2010, would likely need later emissions cuts the likes of which we’ve never seen before to avoid dangerous climate change. The latest IPCC report shines a floodlight on that inertia, which understandably cranks up the tension between researchers and politicians.

Ottmar was one of two co-chairs who led the ‘working group three’ (WGIII) section of the IPCC report that looks at how to cut greenhouse gas emissions. He stressed that the need to make these cuts comes from a fundamental difference between the risks that come from climate change and the risks of mitigation. We can heal economic damage arising from cutting emissions – reversing sea level rise isn’t so easy.

Read the rest of this entry »

The urgent voice who refused to be silenced on climate danger

  • This is part three of this profile. Read part one here and part two here.
In response to the revelations of his ongoing research, NASA scientist Jim Hansen has become increasingly active in campaigning to halt climate change over the past decade. Image credit: Greenpeace

In response to the revelations of his ongoing research, NASA scientist Jim Hansen has become increasingly active in campaigning to halt climate change over the past decade. Image credit: Greenpeace

By December 6, 2005, NASA Goddard Institute of Space Studies’ (GISS) temperature record was already sending a clear message: worldwide, 2005 would likely be the warmest year so far. For GISS director Jim Hansen, speaking to the annual American Geophysical Union conference, arguably the world’s largest environmental research meeting, it seemed fair to reveal. For several listening journalists it was newsworthy enough for them to cover Jim’s talk. But it would anger some of Jim’s colleagues at NASA headquarters enough to try to stop him talking to the media. In the process they’d drag him outside the world of pure research he was most comfortable in. “The undue influence of special interests and government greenwash pose formidable barriers to a well-informed public,” Jim would later write about the situation. “Without a well-informed public, humanity itself and all species on the planet are threatened.”

The comments came during a lecture in honour of Dave Keeling, the CO2 tracking pioneer, who’d died of a heart attack in June that year. Soothing Jim’s hesitation, Dave’s son Ralph stressed he was continuing the work of his father, who had even been discussing one of Jim’s papers minutes before his death. And so Jim had brought together evidence showing that Earth’s climate was nearing a ‘tipping point’ beyond which it will be impossible to avoid dangerous changes. However, warming from 2000 onwards might still be kept below the 1°C level that Jim at that time considered hazardous if CO2 levels in the air were held at about 450 parts per million (ppm). Emissions of other greenhouse gases would also need to be significantly reduced. The message was clear: how we get our energy would must change, mainly by shifting away from coal and the vast volumes of CO2 burning it produces.

NASA headquarters was already reviewing all publicity on climate change research, but the latest coverage would force it into even more severe action. The following week it laid out new restrictions on Jim’s ability to comment publicly, and the global GISS temperature record was temporarily taken off the internet. Prominent amongst those setting the new conditions was NASA’s new head of public affairs, appointed by George Bush’s administration, David Mould. His previous jobs included a senior media relations role at the Southern Company of Atlanta, the second largest holding company of coal-burning power stations in the US. Only one company had donated more to the Republican Party than the Southern Company during George Bush’s 2000 election campaign: Enron. Read the rest of this entry »

The witness who collided with government on climate

  • This is part two of this profile. Read part one here.
Jim Hansen giving testimony at a US Congressional hearing in 1988, where he'd declare 99% certainty that humans are changing the climate. Image credit: NASA

Jim Hansen giving testimony at a US Congressional hearing in 1988, where he’d declare 99% certainty that humans are changing the climate. Image credit: NASA

“It’s time to stop waffling so much and say that the evidence is pretty strong that the greenhouse effect is here.” It’s a comment that wouldn’t sound out of place today, but Jim Hansen made it 26 years ago, on June 23, 1988, amid record 38°C temperatures in Washington DC. Jim said it to reporters after telling a Congressional hearing he was 99% certain the world is getting warmer thanks to human-made greenhouse gases.

Jim’s 1980s media bombshells led journalist Robert Pool to liken him to a religious ‘witness’, ‘someone who believes he has information so important that he cannot keep silent’. However, he still felt shy and awkward, preferring to immerse himself in pure science, and so would turn down almost all invitations to speak out for another decade. Jim’s efforts during that period would then help build even stronger evidence on global warming. But with extra motivation provided by clashes with the US government and the arrival of his grandchildren he would return to bear witness more forcefully than ever.

Before his self-imposed media ban Jim would make headlines one more time in 1989, after giving written evidence to a hearing convened by then US senator Al Gore. The testimony reaching the hearing had been altered by the White House to make his conclusions about the dangers of global warming seem less certain. When Jim sent the future vice-president a note telling him this, he alerted the media, turning their scheming into the lead story across all TV networks that evening. John Sununu, aide to then president George H. W. Bush, would then try to get Jim fired for his troubles. But Republican senator John Heinz intervened on Jim’s behalf, and he kept his job.

The reputation Jim had built up as a warming witness went ahead of him in December 1989, as he walked into a ‘roundtable’ meeting held by senators Al Gore and Barbara Mikulski. On the coldest day of the year, in a building whose heating system had failed, Al noticed Jim enter and said, “Hey, aren’t you the guy who…” Despite such jibes, Jim was becoming firmer in his convictions. In April 1990 he offered a group of climatologists an even money bet that one of the next three years would be the warmest in a century. He’d be proven right by the end of the year. Read the rest of this entry »

How lessons from space put the greenhouse effect on the front page

Normally during a total lunar eclipse, like this one on April 15, 2014, you can still see the moon, but in 1963 Normally during a total lunar eclipse, like this one on April 15, 2014, you can still see the moon, but in 1963

Normally during a total lunar eclipse, like this one on April 15, 2014, you can still see the moon, but in 1963 Jim Hansen saw it disappear completely. Explaining why would send him on a scientific journey to Venus, before coming back down to Earth. Image credit: NASA

Jim Hansen’s life changed on the evening the moon disappeared completely. In a building in a cornfield Jim and fellow University of Iowa students Andy Lacis and John Zink, and their professor Satoshi Matsushima, peered in surprise through a small telescope into the wintry sky. It was December 1963, and they had seen the moon replaced by a black, starless circle during a lunar eclipse. The moon always passes into Earth’s shadow during such eclipses, but usually you can still see it.

At first they were confused, but then they remembered that in March there had been a big volcanic eruption. Mount Agung in Indonesia had thrown tonnes of dust and chemicals into the air: perhaps that was blocking out the little light they’d normally have seen? With a spectrometer attached to their telescope they measured the moon’s brightness, data Jim would then base his first scientific research on. Using this record to work out the amount of ‘sulphate aerosol’ particles needed to make the moon disappear, Jim began a lifelong interest in planets’ atmospheres. That would lead him to become director of the NASA Goddard Institute of Space Studies (GISS), where he has led the way in exposing the threat from human CO2 emissions.

Jim was born in Iowa in 1941, the fifth of seven children of a farmer, who had left school at 14, and his wife. As he grew up they moved into the town of Denison, his father becoming a bartender and his mother a waitress, and Jim spending his time playing pool and basketball. Jim claims he wasn’t academic, but found maths and science the easiest subjects, always getting the best grades in them in his school. Though his parents divorced when he was young, public college wasn’t expensive at the time, meaning Jim could save enough money to go to the University of Iowa.

The university had an especially strong astronomy department, headed by James Van Allen, after whom brackets of space surrounding the Earth are named. These ‘Van Allen Belts’ are layers of particles that he discovered, held in place by the planet’s magnetic field. Satoshi Matsushima, a member of Van Allen’s department, could see Jim and Andy’s potential and convinced them to take exams to qualify for PhD degrees a year early. Both passed, with Jim getting one of the highest scores, and were offered NASA funding that covered all their costs.

A few months later, it was Satoshi who suggested measuring the eclipse’s brightness, feeding Jim’s interest in atmospheres on other planets. “Observing the lunar eclipse in 1963 forced me to think about aerosols in our atmosphere,” Jim told me. “That led to thinking about Venus aerosols.” In an undergraduate seminar course Jim had given a talk about the atmospheres of outer planets, which James Van Allen had attended. The elder scientist told him that recently measured data was suggesting Venus’ surface was very hot. Aerosols stopped light reaching the Earth during the eclipse – could they be warming up Venus by stopping heat escaping, Jim wondered? That would become the subject of his PhD, and Satoshi and James Van Allen would be his advisors. Read the rest of this entry »

Results show quick CO2 ‘fix’ feasibility – but its future rests in government hands

The CarbFix project is trapping natural CO2 emissions underground as Iceland seeks to offset emissions from other sources. Image credit: Reykjavik Energy

The CarbFix project is trapping natural CO2 emissions underground as Iceland seeks to offset emissions from other sources. Image credit: Reykjavik Energy

Although CO2 can stay in the atmosphere, trapping heat, for thousands of years scientists think they have turned it into rock in just a few months. Juerg Matter from the University of Southampton, UK, and his colleagues in the CarbFix project have injected 170 tons of pure CO2 into the reactive basalt underneath Iceland. Their findings suggest around 85% of it reacted with the rock over the short distance between injection and monitoring boreholes in less than one year.

“We think that was because all that CO2 precipitated out as carbonate minerals in the reservoir,” Juerg, who’s also an adjunct scientist at Lamont-Doherty Earth Observatory in New York, told me. “To really prove it this summer we will drill a borehole into the injection reservoir to retrieve rock core samples.” But the CarbFix team has also emphasised this week that it will take higher carbon prices for this and other carbon capture and storage technology to fulfil their potential.

The latest UN Intergovernmental Panel on Climate Change (IPCC) says the cheapest way to avoid dangerous climate change is to stop using fossil fuels and switch to renewable energy. However time’s running out on that option, and the IPCC report therefore highlights the probable need to suck CO2 from the air. But before we capture CO2 straight out of the air, or even from the chimneys of power stations, we need somewhere to put it. Currently captured CO2 is simply pumped and stored underground as a gas, meaning care is needed to choose reservoirs that won’t leak. “Storage options right now are mainly in depleted gas and oil fields, in sedimentary rocks,” Juerg said.

In the air, CO2 eventually reacts with basalt naturally, but that process is far too slow to balance out what humans are emitting. Since 2007 the CarbFix team has been working to see if they can speed that process up by forcing CO2 underground. Not only would this quickly turn the gas into minerals and prevent leak worries, it would also greatly expand the number of places it could be stored. “The storage potential is just huge, there’s billions of tons of reservoir, because basically all the ocean floor is basalt,” Juerg highlighted. Read the rest of this entry »

Dump fossil fuels for the health of our hearts

Air quality in London on April 3, 2014 fell to a level where it became hard to see normally-visible skyscrapers. Conditions hit a 9/10 risk ranking  thanks to a combination of pollution and dust blown in from the Sahara desert. Tackling such pollution could immediately improve people's health, stresses New York University's George Thurston. Image copyright David Holt, used via Flickr Creative Commons license.

Air quality in London on April 3, 2014 fell to a level where it became hard to see normally-visible skyscrapers. Conditions hit a 9/10 risk ranking thanks to a combination of pollution and dust blown in from the Sahara desert. Tackling such pollution could immediately improve people’s health, stresses New York University’s George Thurston. Image copyright David Holt, used via Flickr Creative Commons license.

Sometimes when I blow my nose and – inevitably – look into my handkerchief, I see that my snot is black. It doesn’t happen when I’m at home, in the small English city of Exeter, only when I’m in London. It’s a clear sign of the extra pollution I’m inhaling when I’m in the capital – one backed up by data published last week by Public Health England. Its striking report says that in 2010 73 deaths per thousand in the London borough of Waltham Forest, where my girlfriend’s sister lives, could be put down to grimy air. For Exeter, the figure was just 42 per 1000. Across the whole of England, pollution killed 25,002 people in 2010, or 56 of every 1000 deaths nationwide.

But wherever you live, air pollution will become even more important as the climate changes, while fighting this scourge could also help the world bring global warming under control. “There’s more than enough rationale for controlling emissions based on the health effects and the benefits that we get as a society from getting off of fossil fuels,” New York University’s George Thurston told me. “Those are the benefits that are going to accrue to the people who do the clean-up – locally and immediately, not fifty years from now.”

Public Health England is trying to draw attention to ‘particulate matter’, or dust, less than 2.5 micrometres in diameter, too small to see with our naked eye. You won’t find this ‘PM2.5’ pollution listed as people’s cause of death – it’s likely to be down as a heart attack or lung cancer. George has run huge studies in the US to help work out exactly how much such dust worsens people’s health. One study for the American Cancer Society followed 1.2 million men and women originally enrolled in 1982. Another, started in 1995, tracked over 500,000 US retirees over the following decade. And he was also a part of a worldwide project that last year showed ‘global particulate matter pollution is a major avoidable risk to the health of humankind’. Read the rest of this entry »

Fairness instinct trumps economic expectations on climate costs

ETH Zurich's Robert Gampfer hopes governments can learn from the climate negotiation games he ran. Image credit: ETH Zurich

ETH Zurich’s Robert Gampfer hopes governments can learn from the climate negotiation games he ran. Image credit: ETH Zurich

We care about fairness in sharing climate change costs, although differences in who’s more vulnerable to it can affect our ideas of what exactly is fair. That’s the clear suggestion emerging from a set of climate change negotiation games run by Robert Gampfer from the Swiss Federal Institute of Technology, ETH Zurich. In his experiments, students from Zurich universities took on the role of countries in climate talks trying to agree how costs should be shared. Robert feels this unusual approach provides unique insights into our true attitudes, and could help guide our leaders in responding to them.

“Proposals that are perceived as very unfair are likely to meet public resistance, and governments will therefore be unlikely to agree to them in the international negotiations,” he told me. “But the experiment also showed that participants who were richer or more responsible for climate change often acted rather fairly, even if this meant higher costs for them. This is quite a far-reaching conclusion, but maybe governments of developed countries could actually sell costly climate agreements to their citizens if they perceive some fairness obligation to accept them.”

This study builds on a realisation Robert made when looking into possible topics for his climate politics PhD, which he’s now writing the final thesis for. “A lot of surveys on climate change and climate policies ask only very broad questions – whether you would support your country reducing its emissions or not, for example,” he observed. “But we know very little about how specific aspects of global climate politics influence people’s opinion, for example the debate on burden-sharing fairness. In a standard survey it is easy to be in favour of emission reductions, because stating this does not cost you anything. Real emission reductions probably would have some cost, for example through higher energy prices.”

In seeking deeper insights, Robert realised that political science and economic experiments hadn’t addressed fairness much either. “This might be because many think people’s fairness preferences are not important for an international climate agreement,” he said. “I find this quite surprising: in the negotiations, governments use fairness arguments very often. And they probably do this, among other reasons, because they will receive domestic support from their citizens for adopting such negotiating positions.” Read the rest of this entry »

Renewable energy beats ‘clean coal’ on cost in Australia

A part of the extension of the Snowtown Wind Farm in South Australia that added 90 new 3 megawatt turbines. In South Australia wind farms contribute 27% of annual electricity, notes University of New South Wales' Mark Diesendorf. Photo by David Clarke, used via Flickr Creative Commons license.

A part of the extension of the Snowtown Wind Farm in South Australia that added 90 new 3 megawatt turbines. In South Australia wind farms contribute 27% of annual electricity, notes University of New South Wales’ Mark Diesendorf. Photo by David Clarke, used via Flickr Creative Commons license.

It’s unlikely that fossil fuel power stations that capture and store their CO2 emissions could supply eastern Australia’s electricity more cheaply than renewable energy technologies like solar and wind power. That’s according to a study based on hour-by-hour analysis of electricity demand by Ben Elliston, Iain MacGill and Mark Diesendorf from the University of New South Wales in Sydney. Although renewables are often seen as expensive, these findings highlight that they can be competitive after accounting for the impact of burning coal and gas on our climate. “Our studies, and those conducted by other research groups around the world, find that it is possible to operate reliable national and subnational electricity systems on predominantly renewable energy generated by commercially available technologies and that these systems are affordable,” Mark told me.

Ben is a PhD student, supervised by Iain and Mark, and together the three have sought to answer key questions about renewable energy. Is it possible to supply a whole electricity grid’s needs with these technologies, or are some ‘base-load’ coal or gas power stations needed to fall back on? And if it is possible, would it be affordable?

To answer these questions, Ben designed a computer programme to simulate running an electricity supply system. His program can go through a year’s hourly data on electricity demands, wind and sunshine over the region in a fraction of a second. “Everything else follows from this, provided of course one asks the right questions,” Mark noted.

Over the last two years they have published work exploiting that programme, first showing that it’s possible to reliably supply 100% of eastern Australia’s electricity using renewable energy. Wind and solar power supplied most of the electricity, but output from these technologies varies due to changes in weather. But rather than filling gaps with fossil fuels, they showed existing hydroelectric power stations and gas turbines burning biofuels could be used to meet the grid’s reliability standard. Read the rest of this entry »

Heat drives Pakistani migration

Shahdadpur, Sanghar district, Pakistan: Residents collecting their belongings on a higher ground outside village during floods. Though they may be displaced temporarily, Valerie Mueller from the International Food Policy Research Institute (IFPRI) in Washington DC and her team find high temperatures are more likely to drive permanent migration. Image credit: Oxfam International

Shahdadpur, Sanghar district, Pakistan: Residents collecting their belongings on a higher ground outside village during floods. Though they may be displaced temporarily, Valerie Mueller from the International Food Policy Research Institute (IFPRI) in Washington DC and her team find high temperatures are more likely to drive permanent migration. Image credit: Oxfam International

Excessive rainfall rarely drives Pakistanis to permanently leave their villages, even when it causes hardship like the flooding that hit around a fifth of the country in 2010. Yet they do consistently move in response to extreme temperatures, Valerie Mueller from the International Food Policy Research Institute (IFPRI) in Washington DC and her colleagues have found. She says the finding is a first stage in establishing if, how, and why people’s choices are affected by climate and climate change. “This is a useful step in order to be able to predict migration flows and inform local governments how might they better prepare in terms of the delivery of resources and investing in infrastructure given the occurrence of extreme weather events,” she told me.

There are few efforts collecting information about who has migrated and why over long periods of time, especially in areas where extreme weather occurs. But IFPRI has a long history of evaluating questions linked to food security in countries across the world, including Pakistan. From 1986-1991 its Pakistan Rural Household Survey questioned 800 households about how they lived and farmed, and it has tracked those households ever since. “Local collaborators found the original households in 2001 and 2012 and asked the head of household or an otherwise knowledgeable person what happened to each household member who resided with them in 1991,” Valerie said. “Our study is one of the first to quantify long-term migration patterns over a long period of time.”

The follow-ups recorded the long-term movements and fortunes of 4,428 people from 583 households. The researchers combined these answers with temperature and rainfall data in one ‘logit’ and one ‘multinomial logit’ model designed to let them measure the odds that people moved. “The first model allows us to answer: What are the odds of a person moving out of the household in response to extreme temperature or rainfall?” Valerie explained. “The second model allows us to distinguish moves by location and allows us to answer the following questions: What are the odds of a person moving out of the household but within the village in response to extreme temperature or rainfall? What are the odds of a person moving out of the household but out of the village in response to extreme temperature or rainfall?” Read the rest of this entry »

Follow

Get every new post delivered to your Inbox.

Join 181 other followers