Detailed regional data reduce warming-drought link doubts

Sergio Vicente-Serrano and his team have shown that warming is driving more severe and widespread droughts on the Iberian Peninsula, even in this river plain landscape near Aguilar de Campoo in northern Spain Image Credit: tracX via Flickr Creative Commons license

Sergio Vicente-Serrano and his team have shown that warming is driving more severe and widespread droughts on the Iberian Peninsula, even in this river plain landscape near Aguilar de Campoo in northern Spain Image copyright: tracX, used via Flickr Creative Commons license

Spanish and Portuguese researchers have produced some of the strongest evidence yet that warming climate is making droughts more severe. Sergio Vicente-Serrano from the Pyrenean Institute of Ecology (IPE) in Zaragoza and his colleagues have used detailed data from their countries to overcome uncertainties seen in worldwide studies. They have shown that a local warming of 1.5°C from 1961-2011, and 2.1°C in summer months, and rainfall that has decreased by around a sixth increased drought severity in the region. “Future scenarios in the Iberian Peninsula and southern Europe indicate an increase of temperature even more than 3°C for the 21st century,” Sergio told me. “If we have already observed an important decrease of water resources, you can imagine that in the future water resources in these regions will be at higher risk.”

Air holds and ‘demands’ more water as it gets warmer, which is a fundamental reason for why we might expect both worse droughts and heavier rainfall with climate change. Scientists have already used real-world measurements to look at global changes in drought severity. However, they have disagreed on whether things really have got worse in recent years or not. Sergio stressed that such worldwide research faces important limitations. He emphasised that evapotranspiration – the water released by Earth’s surface and by plants breathing – is important in drought studies. But it has to be worked out from a combination of direct measurements, and the records needed are patchy in areas like Africa or South America.

“I’m very critical of the conclusions of these kinds of global studies, not about the methodology, but the input data,” Sergio said. “The problem is the use of highly uncertain variables. There are problems with precipitation data sets in terms of density of observations. The problems for precipitation are much higher for variables that are necessary to estimate the water demand of the atmosphere. Estimating these kinds of variables with confidence is really difficult. Also, there’s no validation in terms of impact on crop production, stream flows, reservoirs, soil moisture, this information is not available. That’s really the approach that must be followed to determine if drought is increasing in severity and impact.” Read the rest of this entry »

Renewable energy beats ‘clean coal’ on cost in Australia

A part of the extension of the Snowtown Wind Farm in South Australia that added 90 new 3 megawatt turbines. In South Australia wind farms contribute 27% of annual electricity, notes University of New South Wales' Mark Diesendorf. Photo by David Clarke, used via Flickr Creative Commons license.

A part of the extension of the Snowtown Wind Farm in South Australia that added 90 new 3 megawatt turbines. In South Australia wind farms contribute 27% of annual electricity, notes University of New South Wales’ Mark Diesendorf. Photo by David Clarke, used via Flickr Creative Commons license.

It’s unlikely that fossil fuel power stations that capture and store their CO2 emissions could supply eastern Australia’s electricity more cheaply than renewable energy technologies like solar and wind power. That’s according to a study based on hour-by-hour analysis of electricity demand by Ben Elliston, Iain MacGill and Mark Diesendorf from the University of New South Wales in Sydney. Although renewables are often seen as expensive, these findings highlight that they can be competitive after accounting for the impact of burning coal and gas on our climate. “Our studies, and those conducted by other research groups around the world, find that it is possible to operate reliable national and subnational electricity systems on predominantly renewable energy generated by commercially available technologies and that these systems are affordable,” Mark told me.

Ben is a PhD student, supervised by Iain and Mark, and together the three have sought to answer key questions about renewable energy. Is it possible to supply a whole electricity grid’s needs with these technologies, or are some ‘base-load’ coal or gas power stations needed to fall back on? And if it is possible, would it be affordable?

To answer these questions, Ben designed a computer programme to simulate running an electricity supply system. His program can go through a year’s hourly data on electricity demands, wind and sunshine over the region in a fraction of a second. “Everything else follows from this, provided of course one asks the right questions,” Mark noted.

Over the last two years they have published work exploiting that programme, first showing that it’s possible to reliably supply 100% of eastern Australia’s electricity using renewable energy. Wind and solar power supplied most of the electricity, but output from these technologies varies due to changes in weather. But rather than filling gaps with fossil fuels, they showed existing hydroelectric power stations and gas turbines burning biofuels could be used to meet the grid’s reliability standard. Read the rest of this entry »

Twin rainfall effects strengthen human climate impact case

While existing studies of rainfall changes rely on data collected on land, by switching to satellite data LLNL's Kate Marvel and Céline Bonfils could include changes in rainfall at sea. Image copyright snoboard1010 used via Flickr Creative Commons license.

While existing studies of rainfall changes rely on data collected on land, by switching to satellite data LLNL’s Kate Marvel and Céline Bonfils could include changes in rainfall at sea. Image copyright snoboard1010 used via Flickr Creative Commons license.

The way we humans are affecting the climate is changing rainfall patterns over land and sea, scientists at Lawrence Livermore National Laboratory (LLNL) in California have found. Kate Marvel and Céline Bonfils compared precipitation ‘fingerprints’ in satellite data against what climate models showed would result from actions like adding greenhouse gases to the atmosphere. “Everyone knows that temperatures are rising, but figuring out how that affects other aspects of the climate is tricky,” Kate told me. “We’ve shown that global precipitation is changing in the way climate scientists expect it to. The odds of the observed trends being due to natural climate variability are very low.”

Changes to rain, snow and all the other forms of falling wetness collectively known as precipitation are undeniably important, given their power to bring floods and droughts. Scientists have already shown that, over land, wet areas are getting wetter and dry areas are getting drier. These studies rely on data measured directly on land, reaching back almost a century. The long record gives scientists a lot of data to test, making it easier to tell human influences from the many natural rainfall patterns. Yet Kate and Céline wanted to use satellite data instead. Though these have only been recorded since 1979, each measurement is more reliable, and the satellites also cover the oceans.

“With such a short record, it’s often difficult to identify the ‘signal’ of climate change against the background of completely natural variability,” Kate explained. For example, the wet-gets-wetter, dry-gets-dryer strengthening of the Earth’s water cycle happens because warmer air can hold more water vapour. But that can be caused by the El Niño climate pattern, as well as by increasing greenhouse gases. Our activities can also change how air circulates above the planet, pushing dry regions and storm tracks toward the poles – but so can the La Niña pattern.

Read the rest of this entry »

Missed Greenland melt cause raises sea level concern

A team of scientists (the tiny figures in the foreground) at the southwest margin of the Greenland Ice Sheet. Almost all of the surface of the sheet melted in July 2012 - and there's a lot more ice benath the surface, that's why faster melting could be so serious for sea level rise. Credit: University of Sheffield

A team of scientists (the tiny figures in the foreground) at the southwest margin of the Greenland Ice Sheet. Almost all of the surface of the sheet melted in July 2012 – and there’s a lot more ice benath the surface, that’s why faster melting could be so serious for sea level rise. Credit: University of Sheffield

The almost complete melting of Greenland’s ice sheet surface on July 11-12 2012 was caused by climate processes not projected by models. That’s according to an international team led by Edward Hanna from the University of Sheffield, UK that has looked at what might have driven the melt. “The models used to predict future climate change are clearly deficient in simulating some of the recent jet stream changes that we have shown to be responsible for enhanced warming and ice melt over Greenland,” Edward told me. And the world needs to pay attention when Greenland defrosts, as the water it produces is a major part of sea level rise.

Having long studied the Greenland ice sheet, or GrIS, Edward was perhaps one of the people least amazed by 2012’s events. “Last year’s record melt was a bit of a surprise, but perhaps not so startling in retrospect, given strong recent warming of the ice sheet area since the early-mid 1990s,” he said. With other scientists he has also found a clear change since 2007 in early summer Arctic wind patterns relative to previous decades that has led to warm Greenland summers. In particular, jet stream patterns of winds weaving north and south in drunken circles around the pole have changed to drive warm winds over Greenland. That study also linked these changes to cool, wet summers in the UK since 2007, whose unusual wetness in 2012 is seemingly the other face of the GrIS melt coin. Read the rest of this entry »

Diving deep into ocean data uncovers ‘missing heat’ treasure

A new ocean reanalysis called ORAS4, here showing the difference between September 2012 sea temperatures and the average for 1989-2009 (not part of the latest study), has helped show that extra heat trapped in the atmosphere by CO2 humans are emitting is buried in the deep ocean. Credit: ECMWF

A new ocean reanalysis called ORAS4, here showing the difference between September 2012 sea temperatures and the average for 1989-2009 (not part of the latest study), has helped show that extra heat trapped in the atmosphere by CO2 humans are emitting is buried in the deep ocean. Credit: ECMWF

A newly-made picture of ocean history has backed a theory that the missing piece of a climate puzzle at the edge of space lies deep in Earth’s waters. The puzzle comes because the amount of heat energy our planet has absorbed should have warmed it more than it seems to have done. But now, using an ocean reanalysis assembled from data gathered from many sources, UK and US researchers have shown especially strong recent warming in oceans below 700m. “We have found some energy buried at depths,” Kevin Trenberth from the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. “We also have a plausible explanation for it related to changes in winds.”

In 2010, Kevin went public over his worries about a budget that didn’t balance. But rather than money, that budget tallies heat energy from the Sun entering the top of the atmosphere against energy the Earth radiates back out into space. Satellite measurements show more energy coming in than leaving, which is what causes global warming. But Kevin noticed that existing measurements showed the world hadn’t warmed as much since 2003 as this budget would suggest.

With over nine-tenths of the surplus energy coming into the Earth going into the sea, the deep ocean has always looked the likeliest hiding place for the missing heat. However, temperature data from those depths is scarce, making the theory hard to prove. Yet, in the years since Kevin pointed out the problem, scientists have gathered some clues to back that explanation. For example, some used a model that includes the complex links between the atmosphere, land, oceans, and sea ice to run five simulations of the 21st century. They found warming slowdowns on the Earth’s surface similar to what has happened in the 2000s, with the heat going into the deep oceans. But even this just underlined the importance of using measurements to see the effect directly. Read the rest of this entry »

Climate change set to bring Western Europe more hurricanes

In January 2009 a cyclone called Klaus, which is shown here and boasted hurricane-force winds, hit France, Spain and Italy. Such conditions could become much more common in Europe by the end of the 21st century, according to Rein Haarsma and his KNMI team. Credit: H de C via Flickr Creative Commons license

In January 2009 a cyclone called Klaus, which is shown here and boasted hurricane-force winds, hit France, Spain and Italy. Such conditions could become much more common in Europe by the end of the 21st century, according to Rein Haarsma and his KNMI team. Credit: H de C via Flickr Creative Commons license

Current once-in-a-century hurricane-force winds may become as much as 25 times as likely in parts of Western Europe at the end of the 21st century. That’s what Rein Haarsma and a team from the Royal Netherlands Meteorological Institute (KNMI) have shown using one of the highest-resolution climate models around today. Their findings spring from a change in where hurricanes will develop that could also affect western North America, though more research is needed to study this. “The statement that the wind climate in Western Europe will not change significantly is questionable,” Rein told me. “Significant changes in wind climate will have consequences for agriculture – the increased winds are during the autumn – infrastructure and coastal defence.”

With Europe so far from the tropical regions where warmth and unstable atmosphere spawns hurricanes, it rarely sees them today. But when hurricane conditions do happen, like the ‘Great Storm’ in 1987, or Hurricane Floyd in 1993, they live long in the memory. The hurricane remnants that sometimes reach Western Europe usually bring a lot of rain, Rein noted, and only occasionally hurricane-force winds.

The warming Arctic is reducing ocean temperature differences that help create Europe’s traditional storms, meaning they pose less of a threat. But recently findings have shown that a warmer atmosphere raises hurricane risks. “Many model simulations suggest that the strength of hurricanes will increase due to climate change,” Rein explains. “The area where hurricanes develop appears to move poleward and the moisture content in a warmer atmosphere will increase. These factors might alter the possibility that these remnants of hurricanes are still strong enough to produce hurricane-force winds.” Read the rest of this entry »

Altered pressure patterns bring Eurasia intense iciness

People enjoying the winter sun - typical of an anticyclone, or high pressure, weather system - on the frozen Landwehrkanal in Berlin-Kreuzberg, during February 2012, when Berlin set a record for extreme cold. Credit: onnola via Flickr

People enjoying the winter sun – typical of an anticyclone, or high pressure, weather system – on the frozen Landwehrkanal in Berlin-Kreuzberg, during February 2012, when Berlin set a record for extreme cold. Credit: onnola via Flickr

Extreme cold that has left Europe and Asia snowbound, shivering and asking, “What global warming?” in recent years has been driven by intensified high pressure patterns. That’s according to Xiangdong Zhang at the University of Alaska, Fairbanks, who has been studying how such cold snaps fit in with increasing average temperatures worldwide. “Extreme cold weather events can occur in a particular region and short time period in a warming global climate,” Xiangdong pointed out. “This may highly disrupt daily life, damage infrastructure, and impact ecosystems and environment.”

Xiangdong started thinking about extreme cold events because climate studies usually use monthly temperature averages, which overlook them. “This cannot reflect extreme cold temperatures occurring on a particular day because daily temperature changes are filtered out by the average,” he told me. “For example, the monthly averaged temperature in February 2012 was -4.9°C in Berlin. But the coldest daily temperature in the same month at the same location was -19.6°C. We don’t directly feel the monthly average temperature in our daily life. What we feel is day-by-day changes in temperature. But if we can understand mechanisms of daily temperature changes, we would be able to better understand why there is colder or warmer monthly average temperature.”

Outside of tropical areas weather patterns known as cyclones, which would be called low pressure on a weather forecast, and anticyclones, or high pressure, drive those daily temperature changes. Xiangdong had previously been part of a team that adapted an automated cyclone spotting method to look at each one separately. Last year, with researchers from Nanjing University of Information Science and Technology in China, he used that method to study records from across Europe and Asia between 1978-2012. They brought together sea level pressure data recorded every six hours by a global collection network, and daily minimum air temperatures recorded at 1337 meteorological stations.

Read the rest of this entry »

Can we trust climate models?

Scientists use models like the Community Climate System Model (CCSM, shown here) to increase their understanding of the world's climate patterns and learn how they may affect regions around the globe. Credit: PNNL

Scientists use models like the Community Climate System Model (CCSM, shown here) to increase their understanding of the world’s climate patterns and learn how they may affect regions around the globe. Credit: PNNL

Computers crash, freeze, corrupt documents, and otherwise make us swear at them every day. At such moments I briefly blow my own fuse, and my computer becomes my enemy – until I remember it’s revolutionised how I work, communicate and access information. But knowing how easily they can go wrong – and how easily a small, overlooked, mistake in a piece of software can cause unexpected problems later – makes me cautious. That extends to writing this blog, when I often wonder just how much we can rely on the computer models used so widely by scientists studying global warming. So this year I’ve been asking researchers questions like: Why even use models? How can we trust that they’re accurate? How should we understand what they come up with?

These questions go deep into how science works, using evidence from what people see, or experiments we conduct, to build or knock down ideas. The best evidence is directly measured, in as much detail as possible. Today that’s available in some cases, but not all, and we can’t go back in time to get data over the long time periods that might be ideal. For example, this previously limited our understanding of global warming’s effect on tropical cyclones, Bruno Chatenoux from the Global Change and Vulnerability Unit at the United Nations Environment Program in Geneva, Switzerland told me in February. “Formal detection of trends in the existing records is challenged by data quality issues and record length,” he told me. “Model projections suffer less from this, but have other challenges, such as whether they are accurately representing all of the relevant physical processes.”

And while there are a lot of processes to represent, researchers have worked hard to establish them, underlined Xuefeng Cui from Beijing Normal University, China, in July. “Climate models have been developed by groups of scientists to include atmosphere, oceanography, land, biology, chemistry, physics, computing science for about 40 years,” he said. “They have a solid scientific foundation and model the climate system in reasonable resolution.”

Read the rest of this entry »

CO2 casts off shackles to power up Atlantic hurricanes

NOAA's GOES-13 satellite captured this visible image of Hurricane Sandy battering the U.S. East coast on Monday, Oct. 29 at 9:10 am EDT. Sandy's center was about 310 miles south-southeast of New York City. Tropical Storm force winds are about 1,000 miles in diameter, and are set to intensify in the 21st century.  Credit: NASA GOES Project

NOAA’s GOES-13 satellite captured this visible image of Hurricane Sandy battering the U.S. East coast on Monday, Oct. 29 at 9:10 am EDT. Sandy’s center was about 310 miles south-southeast of New York City. Tropical Storm force winds are about 1,000 miles in diameter, and are set to intensify in the 21st century. Credit: NASA GOES Project

Changes in greenhouse gases and other air pollution will likely make Atlantic storms that could hit the Caribbean and Eastern US more intense through this century. That’s according to research from Gabriel Vecchi at the US National Oceanographic and Atmospheric Administration (NOAA) in Princeton, New Jersey, and Gabriele Villarini at the University of Iowa. They’ve found that more greenhouse gases strengthen these storms but other pollutants known as aerosols or particulates, which include soot, do the opposite. Increases in both types of pollution through the 20th century therefore cancelled each other out. But with more recent efforts to limit aerosol pollution succeeding, Atlantic storms now look set to become more destructive. “Both reductions in particulate pollution and increases in greenhouse gases are going to co-operate, we think, to give us more intense hurricanes in the Atlantic,” Gabriel said.

Gabriel has long studied Atlantic storms, and together with Gabriele recently found that how often they happen will likely only increase during the first half of the 21st century. “The number of storms in a season is only part of the story,” Gabriel told me. “A big question for society is the intensity.” So it was natural, he added, to follow on by looking at how strong and long-lasting they are. Scientists have already looked at their intensity for narrow “time-slices”, for example from 1985-2005 and then predicting from 2080 to 2100. “People haven’t explored how we go from the late 20th century to the late 21st century,” Gabriel said.” That’s because to do this research they need complex and very detailed ‘high resolution dynamical’ climate models, which use up scarce time on the world’s most powerful computers. For the same reason, previous studies only look at a few possible scenarios for how much of the greenhouse gas CO2 humans will produce by burning fossil fuels. Read the rest of this entry »

Monsoon instability raises food questions for India

A street in Calcutta floods during monsoon season. After some decades of increasing rainfall, climate change could bring drier monsoons,  said Jacob Schewe from the Potsdam Institute for Climate Impact Research. Credit: Mark E Dyer/Flickr

A street in Calcutta floods during monsoon season. After some decades of increasing rainfall, climate change could bring drier monsoons, said Jacob Schewe from the Potsdam Institute for Climate Impact Research. Credit: Mark E Dyer/Flickr

Monsoon rains in India may fail more frequently as climate change proceeds into the 22nd century, German researchers said this week. That danger could be critical for farming in what is set to become the world’s most highly populated country by 2030, and would follow an already expected wetter period. “Previous studies showed that Indian monsoon rainfall would increase more or less linearly with global warming over the next century,” said Jacob Schewe from the Potsdam Institute for Climate Impact Research. “The monsoon can respond to climate change in a more complicated way. We’ve seen that it matters to look further into the future.”

In South Asia, summer monsoon rains fall as winds blow from the southwest Indian Ocean over the continent between June and September. They end when the wind direction reverses in September or October. What Indian monsoon rain seasons will do as the world warms is an important and difficult question that many researchers are trying to answer. Though more rainfall has been predicted, recent years haven’t matched that expectation. While factors like pollution have an effect, changes climate scientists already know a major climate pattern plays a very important part in monsoons.

“There is a coupling between the El Niño Southern Oscillation and the monsoon that’s been observed for a long time,” Jacob told me. In years when El Niño occurs, an air movement pattern called the Walker circulation pattern gets shifted eastward. That brings high pressure over India and weakens the monsoon. While some changes in El Niño are already happening, the Walker circulation is expected to weaken, but not for some time yet. That could mean scientists’ climate models don’t pick up its effects. “People have looked at monsoon changes but not many studies have looked beyond 2100,” Jacob said. “You really have to consider longer timescales – beyond 2100 – to assess the full range of consequences for the monsoon.” Read the rest of this entry »

Follow

Get every new post delivered to your Inbox.

Join 181 other followers