
A thin layer of ice from an area of the Antarctic where ancient ice records are collected, in polarized light that reveals ice crystals. Rethinking how ice crystal formation affects ancient data collection is helping to solve an outstanding climate puzzle. © Frédéric Parrenin
A different way to dig up links between past levels of CO2 in the air and temperatures could solve a troubling question over the historical climate. Previously, data collected from long cylinders drilled from Antarctica’s ice sheet seemed to show temperatures rising hundreds of years before CO2 levels did. If ancient warming came before a CO2 rise, then the greenhouse gas seemingly couldn’t have caused the warming. Climate skeptics have used this to argue that the CO2 we produce today isn’t causing global warming.
Now, Frédéric Parrenin at the French National Centre for Scientific Research in Grenoble and his teammates have used a different method on these cylindrical ice cores. They say that their approach shows CO2 and temperature rises happened together during the last ‘deglaciation’, when ice sheets retreated during an abrupt warming period 20,000-10,000 years ago. “This makes it possible that CO2 was actually a cause of warming corresponding to the last deglaciation,” Frédéric told me.
Scientists have been using Antarctic ice cores, and bubbles of air from the time the ice formed trapped inside, to study climate history for over 30 years. The time capsule-like bubbles show what chemicals were in the air. Meanwhile, the amounts of different forms, known as isotopes, of elements like hydrogen, carbon and oxygen in the ice reveals the temperature it formed at. And finally, scientists figure out how old the ice and bubbles are from how deep they are in the core – and that’s where Frédéric found problems. Read the rest of this entry »