Results show quick CO2 ‘fix’ feasibility – but its future rests in government hands

The CarbFix project is trapping natural CO2 emissions underground as Iceland seeks to offset emissions from other sources. Image credit: Reykjavik Energy

The CarbFix project is trapping natural CO2 emissions underground as Iceland seeks to offset emissions from other sources. Image credit: Reykjavik Energy

Although CO2 can stay in the atmosphere, trapping heat, for thousands of years scientists think they have turned it into rock in just a few months. Juerg Matter from the University of Southampton, UK, and his colleagues in the CarbFix project have injected 170 tons of pure CO2 into the reactive basalt underneath Iceland. Their findings suggest around 85% of it reacted with the rock over the short distance between injection and monitoring boreholes in less than one year.

“We think that was because all that CO2 precipitated out as carbonate minerals in the reservoir,” Juerg, who’s also an adjunct scientist at Lamont-Doherty Earth Observatory in New York, told me. “To really prove it this summer we will drill a borehole into the injection reservoir to retrieve rock core samples.” But the CarbFix team has also emphasised this week that it will take higher carbon prices for this and other carbon capture and storage technology to fulfil their potential.

The latest UN Intergovernmental Panel on Climate Change (IPCC) says the cheapest way to avoid dangerous climate change is to stop using fossil fuels and switch to renewable energy. However time’s running out on that option, and the IPCC report therefore highlights the probable need to suck CO2 from the air. But before we capture CO2 straight out of the air, or even from the chimneys of power stations, we need somewhere to put it. Currently captured CO2 is simply pumped and stored underground as a gas, meaning care is needed to choose reservoirs that won’t leak. “Storage options right now are mainly in depleted gas and oil fields, in sedimentary rocks,” Juerg said.

In the air, CO2 eventually reacts with basalt naturally, but that process is far too slow to balance out what humans are emitting. Since 2007 the CarbFix team has been working to see if they can speed that process up by forcing CO2 underground. Not only would this quickly turn the gas into minerals and prevent leak worries, it would also greatly expand the number of places it could be stored. “The storage potential is just huge, there’s billions of tons of reservoir, because basically all the ocean floor is basalt,” Juerg highlighted. Read the rest of this entry »

Advertisements

Dump fossil fuels for the health of our hearts

Air quality in London on April 3, 2014 fell to a level where it became hard to see normally-visible skyscrapers. Conditions hit a 9/10 risk ranking  thanks to a combination of pollution and dust blown in from the Sahara desert. Tackling such pollution could immediately improve people's health, stresses New York University's George Thurston. Image copyright David Holt, used via Flickr Creative Commons license.

Air quality in London on April 3, 2014 fell to a level where it became hard to see normally-visible skyscrapers. Conditions hit a 9/10 risk ranking thanks to a combination of pollution and dust blown in from the Sahara desert. Tackling such pollution could immediately improve people’s health, stresses New York University’s George Thurston. Image copyright David Holt, used via Flickr Creative Commons license.

Sometimes when I blow my nose and – inevitably – look into my handkerchief, I see that my snot is black. It doesn’t happen when I’m at home, in the small English city of Exeter, only when I’m in London. It’s a clear sign of the extra pollution I’m inhaling when I’m in the capital – one backed up by data published last week by Public Health England. Its striking report says that in 2010 73 deaths per thousand in the London borough of Waltham Forest, where my girlfriend’s sister lives, could be put down to grimy air. For Exeter, the figure was just 42 per 1000. Across the whole of England, pollution killed 25,002 people in 2010, or 56 of every 1000 deaths nationwide.

But wherever you live, air pollution will become even more important as the climate changes, while fighting this scourge could also help the world bring global warming under control. “There’s more than enough rationale for controlling emissions based on the health effects and the benefits that we get as a society from getting off of fossil fuels,” New York University’s George Thurston told me. “Those are the benefits that are going to accrue to the people who do the clean-up – locally and immediately, not fifty years from now.”

Public Health England is trying to draw attention to ‘particulate matter’, or dust, less than 2.5 micrometres in diameter, too small to see with our naked eye. You won’t find this ‘PM2.5’ pollution listed as people’s cause of death – it’s likely to be down as a heart attack or lung cancer. George has run huge studies in the US to help work out exactly how much such dust worsens people’s health. One study for the American Cancer Society followed 1.2 million men and women originally enrolled in 1982. Another, started in 1995, tracked over 500,000 US retirees over the following decade. And he was also a part of a worldwide project that last year showed ‘global particulate matter pollution is a major avoidable risk to the health of humankind’. Read the rest of this entry »

Detailed regional data reduce warming-drought link doubts

Sergio Vicente-Serrano and his team have shown that warming is driving more severe and widespread droughts on the Iberian Peninsula, even in this river plain landscape near Aguilar de Campoo in northern Spain Image Credit: tracX via Flickr Creative Commons license

Sergio Vicente-Serrano and his team have shown that warming is driving more severe and widespread droughts on the Iberian Peninsula, even in this river plain landscape near Aguilar de Campoo in northern Spain Image copyright: tracX, used via Flickr Creative Commons license

Spanish and Portuguese researchers have produced some of the strongest evidence yet that warming climate is making droughts more severe. Sergio Vicente-Serrano from the Pyrenean Institute of Ecology (IPE) in Zaragoza and his colleagues have used detailed data from their countries to overcome uncertainties seen in worldwide studies. They have shown that a local warming of 1.5°C from 1961-2011, and 2.1°C in summer months, and rainfall that has decreased by around a sixth increased drought severity in the region. “Future scenarios in the Iberian Peninsula and southern Europe indicate an increase of temperature even more than 3°C for the 21st century,” Sergio told me. “If we have already observed an important decrease of water resources, you can imagine that in the future water resources in these regions will be at higher risk.”

Air holds and ‘demands’ more water as it gets warmer, which is a fundamental reason for why we might expect both worse droughts and heavier rainfall with climate change. Scientists have already used real-world measurements to look at global changes in drought severity. However, they have disagreed on whether things really have got worse in recent years or not. Sergio stressed that such worldwide research faces important limitations. He emphasised that evapotranspiration – the water released by Earth’s surface and by plants breathing – is important in drought studies. But it has to be worked out from a combination of direct measurements, and the records needed are patchy in areas like Africa or South America.

“I’m very critical of the conclusions of these kinds of global studies, not about the methodology, but the input data,” Sergio said. “The problem is the use of highly uncertain variables. There are problems with precipitation data sets in terms of density of observations. The problems for precipitation are much higher for variables that are necessary to estimate the water demand of the atmosphere. Estimating these kinds of variables with confidence is really difficult. Also, there’s no validation in terms of impact on crop production, stream flows, reservoirs, soil moisture, this information is not available. That’s really the approach that must be followed to determine if drought is increasing in severity and impact.” Read the rest of this entry »

Weather extremes take twin crop and disease toll

Using MODIS data of red and infra-red emissions from the Earth's surface Assaf Anyamba and his colleagues can track conditions including temperature and levels of plant growth. In this shot the Normalized Difference Vegetation Index (NDVI) for southeast Australia from September to November 2010 shows that plants were thriving after a bout of extremely cool, wet weather. Image copyright: PLOSone, used via Creative Commons license, see reference below.

Using MODIS data of red and infra-red emissions from the Earth’s surface Assaf Anyamba and his colleagues can track conditions including temperature and levels of plant growth. In this shot the Normalized Difference Vegetation Index (NDVI) for southeast Australia from September to November 2010 shows that plants were thriving after a bout of extremely cool, wet weather. Image copyright: PLOSone, used via Creative Commons license, see reference below.

The wet and dry weather extremes the world felt between 2010 and 2012 caused wild variations in farm output and encouraged serious diseases spread by insects like mosquitoes. That’s according to scientists from NASA and the US Department of Agriculture (USDA) who studied severe droughts and rainfall that happened in six places during this period. Harvests in the four drought-stricken regions fell to as little as one-fifth of normal levels, but grew dramatically in the two rain-soaked areas, almost doubling in one case. But wet or dry, extreme conditions favoured certain species of mosquitoes (also known as vectors) that went on to cause outbreaks of illnesses like the potentially-fatal Rift Valley Fever. “Extreme weather events can have both negative and positive impacts,” observed NASA’s Assaf Anyamba. “For example eastern Australia and South Africa had bumper harvests of some crops but at the same time had outbreaks of vector-borne disease.”

Assaf and his coworkers help provide ways for the US government to closely monitor the whole world to see where droughts or wet periods might be happening. One way Assaf does this is with a pair of ‘eyes in the sky’ – NASA’s Terra and Aqua satellites. Each carries a Moderate Resolution Imaging Spectroradiometer, or MODIS, which precisely records the colours of the Earth’s atmosphere and surface, including those we can see and reaching far beyond. Scientists use the infra-red data it collects to track surface temperatures, while a combination of red and infra-red can tell them how leafy places are. From these, NASA makes this awesome ‘NDVI’ map of how well vegetated crop-growing regions across the world are, while the USDA includes them in monthly Rift Valley Fever risk reports.

While it’s important to know the impacts of extreme weather, not all countries are able to measure them. But from 2010 to 2012, the MODIS records captured the most intense set of weather they had recorded since Terra’s launch in 1999. The US, Russia, east Africa and southwest Australia endured droughts, and rain drenched South Africa and southeast Australia. Assaf and his team noticed that this weather was influencing both farming and disease in these cases, and decided to look at ‘the big picture’. “We wanted to showcase this connectedness as an example of the mixed bag of impacts anomalous weather conditions impose on society at large,” he explained. Read the rest of this entry »