The underprepared figurehead that led climate science from calculation to negotiation

Bert Bolin discussing weather maps in Stockholm circa 1955. Image copyright Tellus B, used via Creative Commons license, see Rodhe paper referenced below.

Bert Bolin discussing weather maps in Stockholm circa 1955. Image copyright Tellus B, used via Creative Commons license, see Rodhe paper referenced below.

In 1957, at the young age of 32 and just one year after completing his PhD, Bert Bolin officially gained a new skill: leadership. Taking over the International Meteorological Institute (IMI) in Stockholm, Sweden, after his mentor Carl-Gustaf Rossby’s sudden death must have been a huge shock. But Bert gained responsibility after responsibility over the next 40 years, ultimately becoming the first chairman of the United Nations’ Intergovernmental Panel on Climate Change (UN IPCC). And though it’s hard to beat setting up a Nobel-prize winning organisation, Bert was not just an administrator – his research helped build the foundations of climate science too.

Growing up in Nyköping, south of Stockholm, Bert recorded the weather with encouragement from a schoolteacher father who had studied meteorology at university. After the pair met the Swedish Meteorological and Hydrological Institute’s deputy director when Bert was 17, he moved north to study maths, physics and meteorology at the University of Uppsala. Immediately after graduating in 1946 he went to Stockholm to do military service, where he first saw Carl-Gustaf giving a series of lectures.

By that time Carl-Gustaf had been living in the US for 21 years, pioneering mathematical and physical analysis of the atmosphere, becoming the country’s foremost meteorologist. He had set up meteorology departments at Massachusetts Institute of Technology in the 1930s, and the University of Chicago, Illinois, in the 1940s. He had also modernised the US Weather bureau and by 1946 wanted to help improve meteorology’s status in his native Sweden. As Carl-Gustaf’s renowned organisational prowess gradually pulled together the IMI, Bert came to study with him, gaining his Master’s degree in 1950.

Carl-Gustaf was collaborating with leading scientists of his time, and through some of these links Bert spent a year working in the US after his Master’s. Perhaps the most notable such relationship was with John von Neumann at Princeton University in New Jersey, who had helped develop the hydrogen bomb. John and his team had made history using arguably the world’s first computer, ENIAC, to predict weather mathematically. But when errors emerged, Carl-Gustaf asked Bert to help analyse why, using his understanding of the atmosphere to prevent such forecasts being ‘mathematical fantasy’. Read the rest of this entry »

Advertisements

Continuing the fight for CO2 monitoring

  • This is part two of a two-part post. Read part one here.
Dave Keeling had to balance his work measuring CO2's rise in the air and tracking its movements through the Earth's systems with fighting to get the money to fund his work. Credit: Scripps Institution of Oceanography

Dave Keeling had to balance his work measuring CO2’s rise in the air and tracking its movements through the Earth’s systems with fighting to get the money to fund his work. Credit: Scripps Institution of Oceanography

By 1963, having directly measured a steady increase in CO2 levels over five years, Dave Keeling felt he had clearly shown the value of such non-stop monitoring. But that message hadn’t reached government decision makers. And so Dave swung into the first battle in the war to continue tracking the key greenhouse gas that has flared up repeatedly in the following decades.

Thanks to four new instruments called spectrophotometers, Dave had been able to use the same molecular movements that allow CO2 to absorb heat to measure it. Though his most famous site was at Mauna Loa in Hawaii, one was also installed in Antarctica. Another sailed on a ship and the final one stayed at Dave’s lab at Scripps Institution of Oceanography analysing samples collected in vacuum-filled five litre flasks from aircraft and elsewhere. Thanks to funds from 1957-1958’s International Geophysical Year a team of scientists was busy collecting a “snapshot” of CO2 data that Dave’s boss at Scripps, Roger Revelle, wanted.

So in 1961, Dave moved his family to Sweden for a year to work out exactly what the measurements were showing. He took a fellowship at the Meteorological Institute, University of Stockholm working with its new director Bert Bolin, who had earlier worked on the first computerised weather forecast. With measurements ongoing, annual ‘breathing’ cycles of rising and falling CO2 and the increasing trend underlying them became ever clearer.

Together, Dave and Bert found CO2 concentrations were going up by 0.06 ppm per month on average. Bert also undertook a series of complex calculations by hand to work out CO2 movement and cycles in its levels. In doing so he was showing how oceans, plants on land, and human fossil fuel burning contributed to the patterns that would later need computer models for fuller analysis. This, Dave felt, clearly showed why non-stop CO2 monitoring was needed rather than just snapshots. But by 1963 the shipboard spectrophotometer had come home, and Dave had also called back the one in Antarctica. And with funding cuts biting at the Weather Bureau, now part of the National Oceanic and Atmospheric Administration (NOAA), the staff at Mauna Loa fell from eight to three. And soon afterwards, a problem with Dave’s equipment proved too much for the overstretched team to fix.

“Suddenly there were no precise measurements being made of atmospheric CO2 anywhere,” he recalled. “I had seen the budget cut coming early in 1963 and had tried to prevent its terminating the CO2 program at Mauna Loa Observatory. I even went to Washington to plead for supplemental funding. This had no tangible effect, however, until the cessation of measurements actually occurred. The National Science Foundation (NSF) then found funds to pay for an additional technician at Mauna Loa. I learned a lesson that environmental time-series programs have no particular priority in the funding world, even if their main value lies in maintaining long-term continuity of measurements.” Read the rest of this entry »

What Dave Keeling did ahead of his curve

Dave Keeling in front of the pier at Scripps Institution of Oceanography in San Diego, which houses a variety of measuring equipment. Credit: Scripps Institution of Oceanography

Dave Keeling in front of the pier at Scripps Institution of Oceanography in San Diego, which houses a variety of measuring equipment. Credit: Scripps Institution of Oceanography

On 18 May 1955, Charles David Keeling – Dave to most – set up camp near a footbridge over a river in Big Sur State Park in California. Armed with a set of five litre flasks containing nothing but vacuum, he planned to suck up air samples regularly over the 24 hours. At the time it may have seemed the latest uncertain step of a young man unsure how best to combine his interest in science and love of the outdoors. But instead it became the start of a lifelong quest to accurately measure the main gas that man is changing the world’s climate with: CO2.

“At the age of 27, the prospect of spending more time at Big Sur State Park to take suites of air and water samples instead of just a few didn’t seem objectionable, even if I had to get out of a sleeping bag several times in the night,” Dave wrote in his autobiography. “I did not anticipate that the procedures established in this first experiment would be the basis for much of the research that I would pursue over the next forty-odd years.”

Growing up in the midwest US near Chicago, Dave’s interest in science was kindled at age five, when his economist father introduced him to the wonders of astronomy. To show Dave how the seasons came about, together in their living room they circled a globe around a lamp, serving as the sun. Going through school during the Second World War, Dave took a special class in preflight aeronautics as well as the conventional sciences.

He then enrolled in the University of Illinois early, during the summer, to fit in a year of study before he reached the conscription age of 17. With limited science options available at this time of year, he chose to major in chemistry. “I didn’t particularly like chemistry and repeatedly doubted that I had made the right choice,” he recalled. But before the year – 1945 – was out, the war was over, and so Dave could continue his course. Chemistry students were expected to study economics, but Dave felt that he’d had enough economics at home. So he opted out of chemistry, ultimately getting a general liberal arts degree.

Yet he was still offered a place to study for a chemistry PhD at nearby Northwestern University with a friend of his mother’s. He took it without applying for any others, but later realised his previous studies had left him unprepared. “Accepting so soon was probably a mistake,” he wrote. Required to take a minor subject as part of his studies, Dave chose geology. His supervisor even suggested he might like to make this his major, though Dave declined, graduating in chemistry after a gruelling five years. And while his skills were in great demand from the post-war chemical industry Dave wanted a job that would let him work outside. So he applied for geology roles at universities, managing to find one at the California Institute of Technology. Read the rest of this entry »

Extra climate targets urge faster CO2 cuts

University of Bern's Marco Steinacher has helped show that setting limits on different aspects of damage from climate change will likely limit CO2 emissions more than just temperature alone. Credit: University of Bern

University of Bern’s Marco Steinacher has helped show that setting limits on different aspects of damage from climate change will likely limit CO2 emissions more than just temperature alone. Credit: University of Bern

To give the world a chance of restricting damage caused by climate change, we need more than just a single temperature target, Swiss researchers have found. Marco Steinacher and his teammates at the University of Bern worked out the chances that climate change can be kept within harmful limits in six different areas. “Considering multiple targets reduces the allowable carbon emissions compared to temperature targets alone, and thus CO2 emissions have to be reduced more quickly and strongly,” Marco told me.

In December 2009, world leaders agreed the non-binding Copenhagen Accord, which ‘recognises’ that scientists think world temperature increases beyond 2°C above the pre-industrial average from 1850-1899 would be dangerous. It also mentions sea level rise, protecting ecosystems and food production. And as climate talks have continued since the 1990s, specific new dangers of CO2 emissions have been found. One serious impact that has been realised in the last decade comes from the fact that oceans absorb CO2 from the air, which makes the seas more acidic. That can make it harder for sea creatures’ shells to form, and together with warmer seas can damage coral, and in turn reduce fish numbers available for food. “Traditional climate targets have not addressed this effect,” Marco said.

It might seem reasonable to assume that negotiating climate deals on temperature limits alone could protect against other dangers. But until recently only very simple ‘Earth system’ models were available to test this against the idea of having several targets. They couldn’t simulate regional effects on quantities such as ocean acidification or farming productions, Marco said. “Climate targets that aim at limiting such regional changes can only be investigated with a model that has a certain amount of complexity,” he explained. Read the rest of this entry »

Temperature cuts swathe through Australian seaweed

A mixed seaweed canopy in Western Australia, including Scytothalia dorycarpa (far right), which was completely killed along 100km of the Australian coast by a heatwave in 2011. Credit: Dan Smale

A mixed seaweed canopy in Western Australia, including Scytothalia dorycarpa (far right), which was completely killed along 100km of the Australian coast by a heatwave in 2011. Credit: Dan Smale

A record-breaking heat wave in 2011 killed a seaweed species that many fish and other creatures call home along a 100 km stretch of the Western Australian coast. That underlines the threat from climate change, which is driving more regular ‘extreme events’ like heatwaves, according to Dan Smale of the University of Western Australia (UWA). “Extreme events can wipe out species at their range edge incredibly quickly, which may have wide ranging implications for whole communities of associated plants and animals,” he said.

Metre-plus tall strands of Scytothalia dorycarpa seaweed sway around cool water rocky reefs in southern Australia, forming a playground for other species. It is thought to have evolved in cool conditions, and therefore to be sensitive to warmth. For that reason, in 2006, Dan and his UWA colleague Thomas Wernberg started tracking it in two main locations, Jurien Bay and Hamelin Bay, and 27 other sites. “We suggested that by monitoring its abundance and distribution, we could detect ecologically-significant climate change impacts over periods of years to decades,” Dan said. “We did not realise, however, that the highest-magnitude seawater warming event on record was just around the corner, and we did not expect to see such sudden and extensive shifts in its distribution.”

That extreme was reached in 2011 during the cooler ‘La Niña’ phase of the El Niño Southern Oscillation climate cycle. By contrast to the current Australian heatwave, temperatures rose thanks to an especially strong La Niña increasing the flow of warm water from the tropics. In March 2011 Thomas and Dan measured sea surface temperatures up to 4°C higher than the average for 2006-2010. The heatwave temperatures stayed more than 2°C above the 2006-2010 level for around 10 weeks in both bays. Read the rest of this entry »

Rich versus poor obstructs climate progress

One of the more bizarre scenes at Rio+20 was reigning 2011 Miss Universe Leila Lopes and Executive Board Member of the World Agroforestry Centre (ICRAF) Dr. Dennis Garrity meeting to call for a goal to halt land degradation and to scale up successful community projects to combat desertification. Credit: UNCCD

One of the more bizarre scenes at Rio+20 was reigning 2011 Miss Universe Leila Lopes and Executive Board Member of the World Agroforestry Centre (ICRAF) Dr. Dennis Garrity meeting to call for a goal to halt land degradation and to scale up successful community projects to combat desertification. Credit: UNCCD

Every morning the news is full of fighting – between individuals and groups, within and between countries. When people seem to disagree over nearly everything, it’s strange to expect our leaders to come together for the good of us all, and the whole planet. But that’s exactly what they tried to do last month in Brazil at the Rio+20 UN conference on sustainable development that I recently covered hopefully here on Simple Climate. Will this meeting be remembered as fondly in 20 years’ time as the original “Earth Summit” meeting in Rio de Janeiro 20 years ago that its name refers to? If most reactions to the new agreement reached by political leaders are anything to go by, then no. While rich and poor countries’ competing priorities are largely responsible for the apparently weak wording, some hope of removing key stumbling blocks did emerge from the 45,000-person meeting.

On 22 June, world leaders signed a 49-page document called The Future We Want. As well as renewing the original Earth Summit deal, it charts a road to bringing through sustainable development goals when the UN Millennium Development Goals expire in 2015. It encourages a greener world economy, reducing consumption and improving energy systems. It calls for an international system to conserve high seas biodiversity, action to stop land being degraded and becoming desert, and support for small island developing countries. But the deal’s language lacks power, typically using “should” rather than “must”. And overall there was little about protecting the environment, and much about supporting fair economic growth – a fact that has been strongly attacked by some.

If these goals weren’t already seen as weak in the developed world, that outlook was clinched by how they were formed. The document had been agreed by civil servants even before world leaders began arriving in Rio, meaning that they instead spent their time announcing national initiatives. But the funding for these seems tiny, when the amount needed to meet the goals is estimated to be thousands of billions of dollars. The Sustainable Energy For All initiative – one of UN secretary-general Ban Ki-moon’s highlights of the meeting – saw Brazil commit $4.3 billion to promote universal energy access for its citizens. The US promised $2 billion in grants and loans to support public-private energy partnerships, while businesses and investors committed more than $50 billion to the same scheme. Japan pledged $3 billion in international aid for the green economy – even though the final treaty is vague on what the green economy actually is.

Read the rest of this entry »

Europeans not all at sea on marine climate threats

An illustration of some of the invasive species that are entering the Mediterranean as its seawaters warm. Credit: Glynn Gorick/Clamer

An illustration of some of the invasive species that are entering the Mediterranean as its seawaters warm. Credit: Glynn Gorick/CLAMER

While the public is rightly concerned by sea-level rise, climate change’s impact on European seas will also affect people through shifts in where bacteria and fish are found. That means that as well as the distant threat of property damage, the risks of disease, unemployment and hunger are raised. Those are among the findings collected in a 200-page book summarising research done since 1998 about climate change’s effects on Europe’s ocean environments. “The main message is that changes are happening,” said Carlo Heip, Director of the Royal Netherlands Institute for Sea Research. “The second thing is that they are happening much faster than we thought.”

Heip was among scientists unveiling the results of the Climate Change and European Marine Ecosystem Research, or CLAMER, project in Brussels, Belgium, on Wednesday and Thursday this week. Funded by the European Commission, CLAMER brought researchers from 17 European marine institutes both to create this summary, and look at how well-known the messages within it were among everyday people. “The European Commission has spent, over the last ten years or so, hundreds of millions of Euros in research to find what the impacts of climate change are on the environment, including the marine environment,” Heip said. “They wanted to know, first of all, what the public knows about it, how this research has contributed to public knowledge, what people’s perception is and whether they are willing to do something about it.”

Alongside compiling their book of science, to find out what people think, the scientists surveyed 10,000 people from 10 European countries in an online poll. In January, in association with Brussels-based TNS Opinion, they questioned 1,000 people each from Spain, Italy, Germany, France, Czech Republic, Netherlands, Ireland, United Kingdom, Norway and Estonia. The results showed that Europeans are concerned about climate change’s impact on the seas, with sea level rise and coastal erosion among their leading worries. Not only this, but their estimates of sea level rise and temperature generally matched scientific forecasts, suggesting that “some fundamental messages” are spreading widely. Read the rest of this entry »