The urgent voice who refused to be silenced on climate danger

  • This is part three of this profile. Read part one here and part two here.
In response to the revelations of his ongoing research, NASA scientist Jim Hansen has become increasingly active in campaigning to halt climate change over the past decade. Image credit: Greenpeace

In response to the revelations of his ongoing research, NASA scientist Jim Hansen has become increasingly active in campaigning to halt climate change over the past decade. Image credit: Greenpeace

By December 6, 2005, NASA Goddard Institute of Space Studies’ (GISS) temperature record was already sending a clear message: worldwide, 2005 would likely be the warmest year so far. For GISS director Jim Hansen, speaking to the annual American Geophysical Union conference, arguably the world’s largest environmental research meeting, it seemed fair to reveal. For several listening journalists it was newsworthy enough for them to cover Jim’s talk. But it would anger some of Jim’s colleagues at NASA headquarters enough to try to stop him talking to the media. In the process they’d drag him outside the world of pure research he was most comfortable in. “The undue influence of special interests and government greenwash pose formidable barriers to a well-informed public,” Jim would later write about the situation. “Without a well-informed public, humanity itself and all species on the planet are threatened.”

The comments came during a lecture in honour of Dave Keeling, the CO2 tracking pioneer, who’d died of a heart attack in June that year. Soothing Jim’s hesitation, Dave’s son Ralph stressed he was continuing the work of his father, who had even been discussing one of Jim’s papers minutes before his death. And so Jim had brought together evidence showing that Earth’s climate was nearing a ‘tipping point’ beyond which it will be impossible to avoid dangerous changes. However, warming from 2000 onwards might still be kept below the 1°C level that Jim at that time considered hazardous if CO2 levels in the air were held at about 450 parts per million (ppm). Emissions of other greenhouse gases would also need to be significantly reduced. The message was clear: how we get our energy would must change, mainly by shifting away from coal and the vast volumes of CO2 burning it produces.

NASA headquarters was already reviewing all publicity on climate change research, but the latest coverage would force it into even more severe action. The following week it laid out new restrictions on Jim’s ability to comment publicly, and the global GISS temperature record was temporarily taken off the internet. Prominent amongst those setting the new conditions was NASA’s new head of public affairs, appointed by George Bush’s administration, David Mould. His previous jobs included a senior media relations role at the Southern Company of Atlanta, the second largest holding company of coal-burning power stations in the US. Only one company had donated more to the Republican Party than the Southern Company during George Bush’s 2000 election campaign: Enron. Read the rest of this entry »

Advertisements

The witness who collided with government on climate

  • This is part two of this profile. Read part one here.
Jim Hansen giving testimony at a US Congressional hearing in 1988, where he'd declare 99% certainty that humans are changing the climate. Image credit: NASA

Jim Hansen giving testimony at a US Congressional hearing in 1988, where he’d declare 99% certainty that humans are changing the climate. Image credit: NASA

“It’s time to stop waffling so much and say that the evidence is pretty strong that the greenhouse effect is here.” It’s a comment that wouldn’t sound out of place today, but Jim Hansen made it 26 years ago, on June 23, 1988, amid record 38°C temperatures in Washington DC. Jim said it to reporters after telling a Congressional hearing he was 99% certain the world is getting warmer thanks to human-made greenhouse gases.

Jim’s 1980s media bombshells led journalist Robert Pool to liken him to a religious ‘witness’, ‘someone who believes he has information so important that he cannot keep silent’. However, he still felt shy and awkward, preferring to immerse himself in pure science, and so would turn down almost all invitations to speak out for another decade. Jim’s efforts during that period would then help build even stronger evidence on global warming. But with extra motivation provided by clashes with the US government and the arrival of his grandchildren he would return to bear witness more forcefully than ever.

Before his self-imposed media ban Jim would make headlines one more time in 1989, after giving written evidence to a hearing convened by then US senator Al Gore. The testimony reaching the hearing had been altered by the White House to make his conclusions about the dangers of global warming seem less certain. When Jim sent the future vice-president a note telling him this, he alerted the media, turning their scheming into the lead story across all TV networks that evening. John Sununu, aide to then president George H. W. Bush, would then try to get Jim fired for his troubles. But Republican senator John Heinz intervened on Jim’s behalf, and he kept his job.

The reputation Jim had built up as a warming witness went ahead of him in December 1989, as he walked into a ‘roundtable’ meeting held by senators Al Gore and Barbara Mikulski. On the coldest day of the year, in a building whose heating system had failed, Al noticed Jim enter and said, “Hey, aren’t you the guy who…” Despite such jibes, Jim was becoming firmer in his convictions. In April 1990 he offered a group of climatologists an even money bet that one of the next three years would be the warmest in a century. He’d be proven right by the end of the year. Read the rest of this entry »

Probabilities reveal shape of climate change

Planners looking to prepare for floods, like this one in Venice, Italy, would like better local information on climate change - and now David Stainforth and his colleagues are helping deliver it. Image credit: www.WorldIslandInfo.com, Allison Lince-Bentley, via Flickr Creative Commons license.

Planners looking to prepare for floods, like this one in Venice, Italy, would like better local information on climate change – and now David Stainforth and his colleagues are helping deliver it. Image courtesy http://www.WorldIslandInfo.com, Allison Lince-Bentley, used under Flickr Creative Commons license.

If you want to plan for the future, or even for the present, knowing that our climate is changing, what’s the best way to do it? That’s a question that David Stainforth from the London School of Economics, Sandra Chapman from the University of Warwick and Nicholas Watkins from the British Antarctic Survey have puzzled over. And while David is co-founder of the climateprediction.net project that borrows spare time on peoples’ computers to run climate models, he doesn’t feel that models are always the best source of information.

“It’s clear to me that the detailed local information on how climate is changing, and what it will be like in 2050, can’t be had from climate models today,” David told me. “They’re just not that good. And yet I work a lot with the adaptation and impacts community, who are interested in what’s happening ‘here’, on a very local basis.” So together David, Sandra and Nicholas have turned to measured data, devising a simple way to pick the most important local climate changes from it.

Weather stations around the world monitor daily conditions, and combine to create a record containing occasional extremes, lots of ordinary days, and everything in between. Knowing how common these conditions are is important for people who want to prepare for future climate change. “For flood risks, you’re worried about going over certain rainfall amounts in a given time,” David explained. “Managers of overheating buildings are worried about what proportion of the time temperatures pass certain levels.”

Read the rest of this entry »

Temperature patterns produce perplexing Pliocene puzzle

Lafayette College's Kira Lawrence and her teammates have used ocean bed sediment cores, like this one, to produce a 5 million year climate record. © Intergrated Ocean Drilling Program

Lafayette College’s Kira Lawrence and her teammates have used ocean bed sediment cores, like this one, to produce a 5 million year climate record. © Intergrated Ocean Drilling Program

US, UK and Hong Kong Researchers have produce a unique ‘movie’ of climate reaching back 5 million years, by bringing together data drilled from ocean beds. It reveals three important temperature patterns during the warm early part of the Pliocene period that they couldn’t recreate together in climate models using existing explanations. That’s important because scientists hope the Pliocene could help us know what the future of a warmer Earth might be like. And having uncovered another layer to the Pliocene puzzle, team member Kira Lawrence from Lafayette College in Easton, Pennsylvania, underlined the value of finding its solution.

“Our community of scientists think of the Pliocene as though it was about 3°C warmer than modern temperatures with CO2 concentration about where we are right now,” Kira told me. “But we haven’t recognised before that the pattern of temperature was a lot different. If that’s where we’re headed in the not too distant future, if the temperature and precipitation patterns change in that way, we should have some significant things to think about.”

The Pliocene period started 5.3 million years ago, during which primates made important evolutionary steps towards humanity. Since 2000, there has been a climate data explosion reaching back through this era. Around the world, international drilling expeditions have pierced ocean beds kilometres below sea level, reaching hundreds of metres into sediment to bring back ‘core’ samples. Tiny fossils within that rock and mud can tell scientists temperatures through history, which can give climate scientists real data to test their models against.

Read the rest of this entry »

Evidence rethink puts CO2 and ancient warming back in sync

A thin layer of ice from an area of the Antarctic where ancient ice records are collected, in polarized light that reveals ice crystals. Rethinking how ice crystal formation affects ancient data collection is helping to solve an outstanding climate puzzle. © Frédéric Parrenin

A thin layer of ice from an area of the Antarctic where ancient ice records are collected, in polarized light that reveals ice crystals. Rethinking how ice crystal formation affects ancient data collection is helping to solve an outstanding climate puzzle. © Frédéric Parrenin

A different way to dig up links between past levels of CO2 in the air and temperatures could solve a troubling question over the historical climate. Previously, data collected from long cylinders drilled from Antarctica’s ice sheet seemed to show temperatures rising hundreds of years before CO2 levels did. If ancient warming came before a CO2 rise, then the greenhouse gas seemingly couldn’t have caused the warming. Climate skeptics have used this to argue  that the CO2 we produce today isn’t causing global warming.

Now, Frédéric Parrenin at the French National Centre for Scientific Research in Grenoble and his teammates have used a different method on these cylindrical ice cores. They say that their approach shows CO2 and temperature rises happened together during the last ‘deglaciation’, when ice sheets retreated during an abrupt warming period 20,000-10,000 years ago. “This makes it possible that CO2 was actually a cause of warming corresponding to the last deglaciation,” Frédéric told me.

Scientists have been using Antarctic ice cores, and bubbles of air from the time the ice formed trapped inside, to study climate history for over 30 years. The time capsule-like bubbles show what chemicals were in the air. Meanwhile, the amounts of different forms, known as isotopes, of elements like hydrogen, carbon and oxygen in the ice reveals the temperature it formed at. And finally, scientists figure out how old the ice and bubbles are from how deep they are in the core – and that’s where Frédéric found problems. Read the rest of this entry »

Space agencies pinpoint polar ice sheet damage

The midnight sun casts a golden glow on an iceberg and its reflection in Disko Bay, Greenland, where ice sheet mass loss was five times higher in 2011 than it was in 1992. Much of Greenland’s annual mass loss occurs through 'calving' of icebergs such as this. Credit: Ian Joughin.

The midnight sun casts a golden glow on an iceberg and its reflection in Disko Bay, Greenland, where ice sheet mass loss was five times higher in 2011 than it was in 1992. Much of Greenland’s annual mass loss occurs through ‘calving’ of icebergs such as this. Credit: Ian Joughin.

47 scientists from 26 key laboratories across the world. 10 satellite missions flown over a period of 20 years, whose data adds up to 51 years’ worth. This giant effort looks to have squashed stubborn uncertainty surrounding one key climate question: How quickly are ice sheets resting on land masses at the North and South Poles shrinking? The international team has now found that Greenland’s mass loss is five times as fast as it was in 1992. Overall loss rates in Antarctica are roughly constant in this period, though the east of the continent is actually gaining ice. Over the past 20 years, the polar ice sheets have added 11 mm to sea level rise across the world, one-fifth of the total rise seen in that time.

“Our new estimates are the most reliable to date and they provide the clearest evidence yet of polar ice sheet losses,” said Andrew Shepherd from the University of Leeds, UK, co-leader of the project. “They also end 20 years of uncertainty concerning changes in the mass of the Antarctic and Greenland ice sheets and they’re intended to become the benchmark dataset for climate scientists to use from now on.”

Until the early 1990s, climate researchers expected that mass lost by ice sheets in Greenland as the planet warmed would be balanced by that gained by Antarctica. But measurements showed that both melting and ‘calving’ of icebergs could be speeding up at both poles. This meant the UN’s Intergovernmental Panel on Climate Change (IPCC) couldn’t put an upper limit on what ice sheets might add to sea levels in its last major report on global warming in 2007. And the overall picture has been confused, as efforts to measure whether ice sheets are shrinking or growing have given differing results. Since 1998, there have been 29 different estimates of changes in ice sheet mass. “Taken all of the past studies together, the recent global sea level contribution due to Antarctica and Greenland may have been anywhere between a 2 mm per year rise and a 0.4 mm per year fall,” Andrew told a press conference yesterday. At a workshop in 2010, the IPCC said it was concerned that no further progress would be made by its next report, due in 2014. Read the rest of this entry »

Global view answers ice age CO2 puzzle

Paleoclimate researcher Jeremy Shakun. Credit: Harvard University

Paleoclimate researcher Jeremy Shakun. Credit: Harvard University

Previous data suggesting that the world started warming out of the last ice age before CO2 levels in the atmosphere started rising don’t show the full picture. That’s according to US, French and Chinese scientists who have added to those Antarctic measurements with more taken from 80 locations across the globe. Harvard University’s Jeremy Shakun and colleagues show the greenhouse gas rises before temperature, supporting the case that CO2 drove climate change then, as it is now. “This provides a very tangible example of what rising CO2 can mean for the climate over the long term,” Jeremy said.

In the 1980s, researchers began building the history of CO2 in the atmosphere from cylinders of ice drilled from the Antarctic. Bubbles in the ice contain air from the time they formed, which researchers can measure. They can also figure out how old the ice holding the bubbles is from how deep it is in the core. And finally they can also work out temperature from the amount of the different forms, known as isotopes, of elements like hydrogen, carbon and oxygen in the ice. That’s because the temperature at which the snow that eventually became the ice formed affects how much of each it contains. And because some isotopes are radioactive and decay to a more stable isotope with time, studying them gives scientists another way to check the ice’s age.

The 800,000 year record of atmospheric CO2 from Antarctic ice cores, and a reconstruction of temperature based on hydrogen isotopes in the ice. The current CO2 concentration of 392 parts per million (ppm) is shown by the blue star. Credit: Jeremy Shakun/Harvard University

The 800,000 year record of atmospheric CO2 from Antarctic ice cores, and a reconstruction of temperature based on hydrogen isotopes in the ice. The current CO2 concentration of 392 parts per million (ppm) is shown by the blue star. Credit: Jeremy Shakun/Harvard University

Such methods show temperature and CO2 levels rising and falling together for 800,000 years, Jeremy told journalists over the phone on Tuesday. “The question is: Which is the cause and which is the effect?” he asked. “If you look up close you see temperature changed before CO2 did. This is something the global warming skeptics have jumped on to say, ‘Obviously CO2 doesn’t cause warming because it came after the warming in these records’. But these ice cores only tell you about temperatures in Antarctica. For the same reason that you don’t look at just one thermometer from London or New York to prove or disprove global warming, you don’t want to look at just one spot in the map to reconstruct the past either.” Read the rest of this entry »