Weather extremes take twin crop and disease toll

Using MODIS data of red and infra-red emissions from the Earth's surface Assaf Anyamba and his colleagues can track conditions including temperature and levels of plant growth. In this shot the Normalized Difference Vegetation Index (NDVI) for southeast Australia from September to November 2010 shows that plants were thriving after a bout of extremely cool, wet weather. Image copyright: PLOSone, used via Creative Commons license, see reference below.

Using MODIS data of red and infra-red emissions from the Earth’s surface Assaf Anyamba and his colleagues can track conditions including temperature and levels of plant growth. In this shot the Normalized Difference Vegetation Index (NDVI) for southeast Australia from September to November 2010 shows that plants were thriving after a bout of extremely cool, wet weather. Image copyright: PLOSone, used via Creative Commons license, see reference below.

The wet and dry weather extremes the world felt between 2010 and 2012 caused wild variations in farm output and encouraged serious diseases spread by insects like mosquitoes. That’s according to scientists from NASA and the US Department of Agriculture (USDA) who studied severe droughts and rainfall that happened in six places during this period. Harvests in the four drought-stricken regions fell to as little as one-fifth of normal levels, but grew dramatically in the two rain-soaked areas, almost doubling in one case. But wet or dry, extreme conditions favoured certain species of mosquitoes (also known as vectors) that went on to cause outbreaks of illnesses like the potentially-fatal Rift Valley Fever. “Extreme weather events can have both negative and positive impacts,” observed NASA’s Assaf Anyamba. “For example eastern Australia and South Africa had bumper harvests of some crops but at the same time had outbreaks of vector-borne disease.”

Assaf and his coworkers help provide ways for the US government to closely monitor the whole world to see where droughts or wet periods might be happening. One way Assaf does this is with a pair of ‘eyes in the sky’ – NASA’s Terra and Aqua satellites. Each carries a Moderate Resolution Imaging Spectroradiometer, or MODIS, which precisely records the colours of the Earth’s atmosphere and surface, including those we can see and reaching far beyond. Scientists use the infra-red data it collects to track surface temperatures, while a combination of red and infra-red can tell them how leafy places are. From these, NASA makes this awesome ‘NDVI’ map of how well vegetated crop-growing regions across the world are, while the USDA includes them in monthly Rift Valley Fever risk reports.

While it’s important to know the impacts of extreme weather, not all countries are able to measure them. But from 2010 to 2012, the MODIS records captured the most intense set of weather they had recorded since Terra’s launch in 1999. The US, Russia, east Africa and southwest Australia endured droughts, and rain drenched South Africa and southeast Australia. Assaf and his team noticed that this weather was influencing both farming and disease in these cases, and decided to look at ‘the big picture’. “We wanted to showcase this connectedness as an example of the mixed bag of impacts anomalous weather conditions impose on society at large,” he explained. Read the rest of this entry »

Advertisements

The climate challenges that my morning toast poses

Britain's wheatfields could become even more productive as the world warms - but that will have implications for further greenhouse gas emissions and fairness to countries less well positioned. Image credit: Tim Gage used via Flickr Creative Commons license

Britain’s wheatfields could become even more productive as the world warms – but that will have implications for further greenhouse gas emissions and fairness to countries less well positioned. Image credit: Tim Gage used via Flickr Creative Commons license

It may seem that nothing could be simpler than toast, but next time I see a slice pop up I’ll also see an emblem of the world’s future. That’s thanks to a UK study exploring the problems surrounding growing enough wheat for flour and other foods as the world warms and has ever more people in it. The issue is especially tangled, Mirjam Röder and her University of Manchester teammates show, as adapting farming for the future will likely increase greenhouse gas emissions, driving further warming. “Climate change and food security are two issues which can’t be decoupled,” Mirjam told me. “The same applies for mitigation and adaptation.”

Mirjam is part of the “Climate change mitigation and adaptation in the UK food system” project, led by Alice Bows-Larkin and backed by Manchester’s Sustainable Consumption Institute. One concern the project reflects is that without adaptation farming will probably be the industry worst hit by climate change, with worldwide productivity falling as temperatures rise. Meanwhile, farming also releases about one-tenth of the greenhouse gases we humans emit overall. “These are largely emissions other than CO2, such as nitrous oxide and methane, mainly occurring from natural processes,” Mirjam said. “They are much harder to reduce and control. Then of course global society is challenged by increasing global food demand. So we face a triad of challenges in the food system: we need to reduce emissions, while food demand is increasing and the sector is impacted by climate change.”

Alice and Mirjam’s team looked at wheat because it makes up almost a third of all cereals grown in the world. “Global wheat demand is projected to increase by about 30% by 2050,” Mirjam. “If we don’t find methods to reduce them, total emissions from producing more wheat will rise.” As well as gases released directly by bacteria and other soil microorganisms, emissions from wheat farming arise from the energy needed to produce nitrogen fertiliser. Whether growing more wheat or dealing with rising temperatures, farmers will need more fertiliser, driving more emissions and therefore further warming. Read the rest of this entry »

Is our weird weather linked to climate change? Oddly, sport can show us the score.

UK Met Office data shows some parts of the country had more than three times average rainfall levels in January, and the country overall set a new rainfall record for the month. Contains public sector information licensed under the Open Government Licence v1.0

UK Met Office data shows some parts of the country had more than three times average rainfall levels in January, and the country overall set a new rainfall record for the month. Contains public sector information licensed under the Open Government Licence v1.0

In a sane world, the worldwide weather chaos that has engulfed the start of 2014 would be memorable. As the eastern US and Canada freeze in winter storms of ‘historical proportions’ as far south as Texas, California remains parched and record temperatures have baked Alaska. As increasingly regular heatwaves scorch Australia, the UK is drowning under record rainfall and being battered by hurricane-force winds, with storms also felt elsewhere in Europe. Yet we may soon forget these dramas and have our attentions sucked in by a new set of meteorological monsters, if they’re linked to changing climate. But are they? Though it’s a murky question, if you look at it like sport, it’s easier to get a feel for than you might think.

Even if you detest football (or soccer, if you prefer), you’ll likely know that in sport the metaphorical playing field is often uneven. Take, for example, last Saturday’s English Premier League match between Manchester City and Norwich City. The Manchester side is owned by Sheikh Mansour bin Zayed Al Nahyan, whose personal wealth is estimated at £20 billion, lavished happily on players for his club. The joint majority owner of the Norwich side is celebrity chef Delia Smith who, despite her success, doesn’t quite have Sheikh Mansour’s financial muscle.

The status difference can be seen in Manchester City’s current lofty league position, and Norwich’s place near the foot of the table. It was obvious last November, when Manchester City thumped Norwich 7-0. So even though last weekend’s match was in Norwich, bookmakers knew Manchester City’s chances of winning were good. Their odds rated a Manchester City win as nearly eight times as likely as a Norwich win, and nearly four times as likely as a draw. But with the unpredictability that gives sport its excitement, Norwich battled hard and kept their opponents from scoring, earning themselves a 0-0 draw. Read the rest of this entry »

Heat drives Pakistani migration

Shahdadpur, Sanghar district, Pakistan: Residents collecting their belongings on a higher ground outside village during floods. Though they may be displaced temporarily, Valerie Mueller from the International Food Policy Research Institute (IFPRI) in Washington DC and her team find high temperatures are more likely to drive permanent migration. Image credit: Oxfam International

Shahdadpur, Sanghar district, Pakistan: Residents collecting their belongings on a higher ground outside village during floods. Though they may be displaced temporarily, Valerie Mueller from the International Food Policy Research Institute (IFPRI) in Washington DC and her team find high temperatures are more likely to drive permanent migration. Image credit: Oxfam International

Excessive rainfall rarely drives Pakistanis to permanently leave their villages, even when it causes hardship like the flooding that hit around a fifth of the country in 2010. Yet they do consistently move in response to extreme temperatures, Valerie Mueller from the International Food Policy Research Institute (IFPRI) in Washington DC and her colleagues have found. She says the finding is a first stage in establishing if, how, and why people’s choices are affected by climate and climate change. “This is a useful step in order to be able to predict migration flows and inform local governments how might they better prepare in terms of the delivery of resources and investing in infrastructure given the occurrence of extreme weather events,” she told me.

There are few efforts collecting information about who has migrated and why over long periods of time, especially in areas where extreme weather occurs. But IFPRI has a long history of evaluating questions linked to food security in countries across the world, including Pakistan. From 1986-1991 its Pakistan Rural Household Survey questioned 800 households about how they lived and farmed, and it has tracked those households ever since. “Local collaborators found the original households in 2001 and 2012 and asked the head of household or an otherwise knowledgeable person what happened to each household member who resided with them in 1991,” Valerie said. “Our study is one of the first to quantify long-term migration patterns over a long period of time.”

The follow-ups recorded the long-term movements and fortunes of 4,428 people from 583 households. The researchers combined these answers with temperature and rainfall data in one ‘logit’ and one ‘multinomial logit’ model designed to let them measure the odds that people moved. “The first model allows us to answer: What are the odds of a person moving out of the household in response to extreme temperature or rainfall?” Valerie explained. “The second model allows us to distinguish moves by location and allows us to answer the following questions: What are the odds of a person moving out of the household but within the village in response to extreme temperature or rainfall? What are the odds of a person moving out of the household but out of the village in response to extreme temperature or rainfall?” Read the rest of this entry »

When the climate change fight got ugly

  • Steve Schneider talks about climate and energy with Johnny Carson on the Tonight Show in 1977, early on in his efforts to bring human-caused climate change to the public's notice.

    Steve Schneider talks about climate and energy with Johnny Carson on the Tonight Show in 1977, early on in his efforts to bring human-caused climate change to the public’s notice.

    This is part two of this profile. Read part one here.

“How many of you think the world is cooling?” That’s what Steve Schneider asked the studio audience of the Tonight Show with Johnny Carson in September 1977. And when the majority put their hands up, he explained that the recent cooling trend had only been short-term. Though the unscripted poll meant Steve wasn’t invited back to the programme, through the summer of that year he had brought climate science to US national TV. The appearances typified Steve’s efforts to bring climate change to the world’s notice – efforts that would later draw attention of a less desirable sort.

Building on his earlier high profile research, Steve had just published ‘The Genesis Strategy: Climate and Global Survival’, predicting ‘demonstrable climate change’ by the end of the century. Whether human pollution would cause warming or cooling, he argued governments should copy the biblical story where Joseph told Pharoah to prepare for lean years ahead. In a decade already torn by rocketing food and oil prices, the advice resonated with many who wanted to head off any further crises.

Some scientists criticised Steve and those like him for speaking straight to the public. In particular, climate science uncertainties were so great that they feared confusion – like that over whether temperatures were rising or falling – was inevitable. That dispute grew from a basic question about science’s place in society. Should researchers concentrate on questions they can comfortably answer using their existing methods? Or should they tackle questions the world needs answered, even if the results that follow are less definite?

At a meeting to discuss climate and modelling research within the Global Atmospheric Research Programme (GARP) in 1974 near Stockholm, Sweden, Steve pushed for the second approach. Given the food problems the world was struggling with at the time, it seemed obvious that climate change impacts like droughts, floods and extreme temperatures would bring famines. “I stood alone in arguing that we had to consider the implications of what we were researching,” Steve later wrote. While some attacked him angrily, saying they weren’t ready to address these problems, conference organiser Bert Bolin agreed that socially important questions must be answered.

The suggestion was also controversial because it meant blurring the lines between climate science and other subjects, such as agriculture, ecology and even economics. The director at the US National Center for Atmospheric Research (NCAR) in Boulder, Colorado, where Steve worked, warned that crossing subject boundaries might cost him promotion. But he responded with characteristic wilfulness, founding a journal doing exactly what he was warned not to. Read the rest of this entry »

Give those we love the climate they deserve

Residents in Azaz, Syria on 16 August 2012 clear up after their buildings were bombed during the country's civil war, for which one of the many causes was a drought that has been linked to climate change.

Residents in Azaz, Syria on 16 August 2012 clear up after their buildings were bombed during the country’s civil war, for which one of the many causes was a drought that has been linked to climate change.

Over the next week I hope to be spending time with those I love the most. But this week I’ve been reading the latest newsletter from Medecins Sans Frontiers/Doctors Without Borders (MSF) about the horrible situation in Syria. The country’s civil war has been ongoing since 2011, with a toll that puts the good fortune me and my family enjoy into chilling context.

It’s estimated that there have been 120,000 deaths with over 4.5 million – in a country of just 22.5 million – having to leave their homes. Though that’s a lot of people, I am increasingly numb to the numbers, like many of you might be. But the stories from MSF really hit home. Yes, Syria had serious problems before the war, but it had a comparatively good health system. Now, if you have asthma, diabetes, or appendicitis, it can be life threatening. Ever more children are being born with severe defects, possibly due to the mothers not getting enough folic acid in their diet.

Though there are many factors behind the conflict, an important one is a drought that hit the country’s poorest areas in early 2011. Commentators have highlighted that droughts in Syria have become more common in recent years, linking this to climate change. Earlier this month, US scientists reported that a recent three year drought in Syria was too unusual to be a natural event. All of us who use fossil fuel energy likely bear some responsibility.

While it’s always hard to be certain about such links, they’re backed up by what University of California, Berkeley’s Ted Miguel told me in August. “Many global climate models project global temperature increases of at least 2°C over the next half century,” Ted told me. “Our findings suggest that global temperature rise of 2°C could increase the rate of intergroup conflicts, such as civil wars, by over 50% in many parts of the world, especially in tropical regions where such conflicts are most common.”

Earlier this month, Jim Hansen from Columbia University in New York and his team warned that even world average temperatures 1°C above pre-industrial levels would be dangerous. The Earth has already warmed 0.8°C in the past 100 years, meaning that threshold is near. And many other researchers I’ve spoken to this year have found evidence that shows the dangers. Read the rest of this entry »

Fighting for useful climate models

  • This is part two of a two-part post. Read part one here.
Princeton University's Suki Manabe published his latest paper in March this year, 58 years after his first one. Credit: Princeton University

Princeton University’s Suki Manabe published his latest paper in March this year, 58 years after his first one. Credit: Princeton University

When Princeton University’s Syukuro Manabe first studied global warming with general circulation models (GCMs), few other researchers approved. It was the 1970s, computing power was scarce, and the GCMs had grown out of mathematical weather forecasting to become the most complex models available. “Most people thought that it was premature to use a GCM,” ‘Suki’ Manabe told interviewer Paul Edwards in 1998. But over following decades Suki would exploit GCMs widely to examine climate changes ancient and modern, helping make them the vital research tool they are today.

In the 1970s, the world’s weather and climate scientists were building international research links, meeting up to share the latest knowledge and plan their next experiments. Suki’s computer modelling work at Princeton’s Geophysical Fluid Dynamics Laboratory (GFDL) had made his mark on this community, including two notably big steps. He had used dramatically simplified GCMs to simulate the greenhouse effect for the first time, and developed the first such models linking the atmosphere and ocean. And when pioneering climate research organiser Bert Bolin invited Suki to a meeting in Stockholm, Sweden, in 1974, he had already brought these successes together.

Suki and his GFDL teammate Richard Weatherald had worked out how to push their global warming study onto whole world-scale ocean-coupled GCMs. They could now consider geographical differences and indirect effects, for example those due to changes of the distribution of snow and sea ice. Though the oceans in the world they simulated resembled a swamp, shallow and unmoving, they got a reasonably realistic picture of the difference between land and sea temperatures. Their model predicted the Earth’s surface would warm 2.9°C if the amount of CO2 in the air doubled, a figure known as climate sensitivity. That’s right in the middle of today’s very latest 1.5-4.5°C range estimate.

Comparison between the measured sea surface temperature in degrees C calculated by the GFDL ocean-coupled GCM, from a 1975 GARP report chapter Suki wrote - see below for reference.

Comparison between the measured sea surface temperature in degrees C calculated by the GFDL ocean-coupled GCM, from a 1975 GARP report chapter Suki wrote – see below for reference.

At the time no-one else had the computer facilities to run this GCM, and so they focussed on simpler models, and fine details within them. Scientists model climate by splitting Earth’s surface into 3D, grids reaching up into the air. They can then calculate what happens inside each cube and how it affects the surrounding cubes. But some processes are too complex or happen on scales that are too small to simulate completely, and must be replaced by ‘parameterisations’ based on measured data. To get his GCMs to work Suki had made some very simple parameterisations, and that was another worry for other scientists. Read the rest of this entry »