Becoming more than an old gasbag: Climate chemistry on YouTube, cryogenic energy storage, and community renewable energy

All gas and bulls**t. That’s me – or so some of my critics think. And this time they’re right, although not in the way they think they are.

Over recent months I’ve been delighted to work with the enormously talented Adam Levy, better known as ClimateAdam, on a couple of videos. They deal with just why greenhouse gases trap energy in the atmosphere, a subject that has come up when I’m discussing climate with friends. It’s hard to understand how gases that are present in the atmosphere in such tiny amounts compared to oxygen and nitrogen can be so powerful. But it’s all to do with molecules absorbing light energy in a way that makes their atoms vibrate, which is also how substances get their colours.

I know this because it came up in my first year undergraduate chemistry course at the University of Southampton. My amazing lecturer, Martin Grossel, demonstrated the principles by standing on a stool with balloons in each hand, representing atoms. He then wiggled his arms to represent the vibrations in question. This is the kind of thing that just doesn’t come across in writing. So when I bumped into Adam at the Association of British Science Writers’ annual award ceremony last year, I suggested he put something like this into some of his videos. He then used the opportunity to apply for some science communication funding from the Royal Society of Chemistry. Having secured that cash, through the course of 2018 we’ve been working together on the script, and here are the final products:

These videos also show why carbon emissions are not the same as carbon dioxide emissions – the difference is two oxygen atoms – a common confusion that jangles my chemical sensibility. Apologies in advance if I ever annoyingly pull you up on this.

That’s the gas, but it’s definitely not the bulls**t. That comes in an article I recently had published on Physics World that talks about the exciting prospects for gases in energy storage. Cryogenically cooling and condensing gases – such as the air around us – when renewable energy is abundant is a potential means for storage. What’s more, you can use the cooling for refrigeration, and the liquid gases are portable.

But the bulls**t is what excites me the most. As our second video above shows, methane is a potent greenhouse gas and its emissions from farming – including from cows belching and pooing – are hard to reduce. So one of the companies I wrote about is looking to store the manure, collect the methane and cryogenically store it. Then,  farmers can burn it when energy is needed and feed electricity into the grid, displacing natural gas, for example. But like the other gases, the liquid methane is portable and could be used to run trucks that currently use diesel, and eliminate the horrible pollution that brings. Or it could be used to supply the many people in rural areas that – surprisingly to many urbanites – have no access to the gas grid.

It’s been months and months since I last posted here, but I hope that some of you have been following my climate writings elsewhere. I’ve used the time I used to put into blogging for lots of other things, including becoming a director of Exeter Community Energy this year, supporting renewable electricity generation and energy efficiency.

In case you hadn’t noticed, the climate issue is more pressing than ever. I’ve valued how Simple Climate enabled me to see how true that is. But having learned more about science writing, I appreciate that those reading this are mostly going to be those who likewise care about the climate. You guys know this stuff is important already – and so I’ve mainly decided it’s time to stop faffing around with blog posts and go do something practical. If you feel the same way, seeking out your local community renewable energy group is one excellent way to make a difference.

Advertisements

The climate challenges that my morning toast poses

Britain's wheatfields could become even more productive as the world warms - but that will have implications for further greenhouse gas emissions and fairness to countries less well positioned. Image credit: Tim Gage used via Flickr Creative Commons license

Britain’s wheatfields could become even more productive as the world warms – but that will have implications for further greenhouse gas emissions and fairness to countries less well positioned. Image credit: Tim Gage used via Flickr Creative Commons license

It may seem that nothing could be simpler than toast, but next time I see a slice pop up I’ll also see an emblem of the world’s future. That’s thanks to a UK study exploring the problems surrounding growing enough wheat for flour and other foods as the world warms and has ever more people in it. The issue is especially tangled, Mirjam Röder and her University of Manchester teammates show, as adapting farming for the future will likely increase greenhouse gas emissions, driving further warming. “Climate change and food security are two issues which can’t be decoupled,” Mirjam told me. “The same applies for mitigation and adaptation.”

Mirjam is part of the “Climate change mitigation and adaptation in the UK food system” project, led by Alice Bows-Larkin and backed by Manchester’s Sustainable Consumption Institute. One concern the project reflects is that without adaptation farming will probably be the industry worst hit by climate change, with worldwide productivity falling as temperatures rise. Meanwhile, farming also releases about one-tenth of the greenhouse gases we humans emit overall. “These are largely emissions other than CO2, such as nitrous oxide and methane, mainly occurring from natural processes,” Mirjam said. “They are much harder to reduce and control. Then of course global society is challenged by increasing global food demand. So we face a triad of challenges in the food system: we need to reduce emissions, while food demand is increasing and the sector is impacted by climate change.”

Alice and Mirjam’s team looked at wheat because it makes up almost a third of all cereals grown in the world. “Global wheat demand is projected to increase by about 30% by 2050,” Mirjam. “If we don’t find methods to reduce them, total emissions from producing more wheat will rise.” As well as gases released directly by bacteria and other soil microorganisms, emissions from wheat farming arise from the energy needed to produce nitrogen fertiliser. Whether growing more wheat or dealing with rising temperatures, farmers will need more fertiliser, driving more emissions and therefore further warming. Read the rest of this entry »

Speeding poor countries’ progress could halve farming emission growth

Improving agricultural productivity - particularly without increasing fertiliser use - could help cut greenhouse gas emissions from agriculture. Credit: IIASA

Improving agricultural productivity – particularly without increasing fertiliser use – could help cut greenhouse gas emissions from agriculture. Credit: IIASA

If the world’s poorer countries progress faster towards farming like richer ones the improved food availability could help fight climate change. That’s according to Austrian and Australian scientists who say that they have looked at climate change’s links to both animal and crop farming in the most depth yet.

Hugo Valin from the International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria, and his colleagues studied cutting the gaps between farming output in rich and poor countries. They say halving this ‘yield gap’ for crops, and reducing it by a quarter for animals, could halve the increase in worldwide greenhouse gas emissions from farming between 2000 and 2050. But they have also found that improved farming methods could raise how much food people eat, meaning that emission reductions aren’t as much as they would be otherwise.

“The widespread idea is that intensifying crop farming is beneficial to the environment because it spares land,” Hugo told me. “We show that it is more complex than this. Intensification also stimulates consumption because it allows farmers to supply more food at affordable prices.”

Farming produces about a third of all ‘man-made’ greenhouse gas emissions, though a lot of them are actually from farm animals’ belches and farts and manure. The rest come from chemical reactions of fertiliser used on crops in soil, and also gases released from soil, plants and trees when forests are converted into farmland. Four-fifths of these emissions happen in developing countries. The world’s population is set to grow from around 7 billion people today to between 8.3 and 10.9 billion by 2050. We need more food for those extra people, which will add to the greenhouse gases farming puts into the air each year. Read the rest of this entry »

Scientists spotlight rock’s role in carbon capture success

Equipment for monitoring seismic activity being deployed in a borehole at the Weyburn CO2 storage site in Saskatchewan, Canada. Credit: University of Bristol

Equipment for monitoring seismic activity being deployed in a borehole at the Weyburn CO2 storage site in Saskatchewan, Canada. Credit: University of Bristol

Climate change is a problem that many would like to bury – and indeed ‘burying’ CO2 deep underground might be needed to get it under control. And injecting the greenhouse gas among the rocks below us on a large scale is a serious option, if the storage sites are chosen carefully. That’s according to a study of three sites where ‘carbon capture and storage’ (CCS) has been done, published by University of Bristol’s James Verdon and his teammates this week. “Too often CCS is seen as a binary thing – it’ll either be brilliant or hopeless, depending on whether you are for or against,” James told me. “This study shows that every CCS site will be different – there won’t be a one size fits all solution.”

Scientists think it will be dangerous if global temperatures go more than 2°C above the pre-industrial average from 1850-1899. That’s recognised by governments in a non-binding climate change target in the Copenhagen Accord in 2009, where many also pledged actions to cut their CO2 emissions. But we continue to pump out ever more CO2, making the chances of sticking to the target through emission cuts alone ever slimmer.

CCS, which captures CO2 where lots would otherwise be released and then stores it where it can’t reach the air, is an alternative approach. Though the cost of the technology needed to do this has meant projects have been delayed and even abandoned, eight large-scale CCS projects are operational today. James has worked at two: Weyburn in Canada, and In Salah in Algeria. At a meeting of British CCS scientists he mentioned this to Andy Chadwick from the British Geological Survey in Nottingham, who had worked at the Sleipner CCS project in Norway. They realised that comparing the sites could help answer one of the biggest potential issues around CCS beyond cost: how rocks respond to CO2 injection. Read the rest of this entry »

How cold hearts and ice ages kindled the science of warming

Svante Arrhenius, who won the Nobel Prize for chemistry, and also was the first to show that while water plays the largest role in the greenhouse effect, the smaller but forcing effect from CO2 can be important. Image via Wikimedia Commons, PD-US

Svante Arrhenius, who won the Nobel Prize for chemistry, and also was the first to show that while water plays the largest role in the greenhouse effect, the smaller but forcing effect from CO2 can be important. Image via Wikimedia Commons, PD-US

In 1896, Swedish scientist Svante Arrhenius took off into the atmosphere. Or at least into an immense calculation about the atmosphere that might distract him from having divorced his wife Sofia, who had taken custody of their baby son Olof. He looked to the skies to settle a key argument: How can landscapes around the world show evidence of ice scraping over it?

At the time, the idea of an ice age was controversial, and the world’s great minds struggled to explain the mile-thick sheets clues suggested had existed. For months Svante laboured by hand to calculate how tiny reductions in a gas called carbon dioxide – CO2 – could team up with water vapour to cool down the world. He didn’t produce an immediate answer to the riddle of the ice age, and he may or may not have escaped the woes of his personal life. But Svante Arrhenius did lay a foundation that climate science still rests upon today.

The tools that Svante used had recently been forged in the furnace of scientific progress that was the 19th century. Until then, even an effect as seemingly basic as heat had been poorly understood. Only slowly had the idea that it was a kind of fluid or gas been replaced by the modern understanding that it’s a flow of energy. In the 1820s French mathematician Joseph Fourier helped drive that shift. He also mused on why, when the Sun heats the Earth, doesn’t the Earth get as hot as the Sun?
Read the rest of this entry »

Climate controls must cover gases other than CO2

Agriculture is one of the main sources for the greenhouse gas nitrous oxide (N2O) which results from the use of fertilisers. Credit: André Künzelmann/UFZ

Agriculture is one of the main sources for the greenhouse gas nitrous oxide (N2O) which results from the use of fertilisers. Credit: André Künzelmann/UFZ

Cutting emissions of other greenhouse gases would slam the brakes on short-term climate change faster than controlling CO2 alone. But rather than offering an easy way out, warns Jim Butler, director of the Global Monitoring Division at the US National Oceanic and Atmospheric Administration (NOAA), they present both an opportunity and a challenge. “Addressing them can help us see earlier results than we would see with CO2, which poses a problem today but a much bigger one in the future,” he told Simple Climate. “CO2 must be addressed, but ignoring these other gases too could take us to places where we don’t want to go.”

Butler’s division has tracked the levels of different gases in the atmosphere for decades. Among them he says, CO2 rightfully gains most attention. That’s because it traps so much of the sun’s energy, it currently accounts for almost two-thirds of the warming power known as “climate forcing”. “It is responsible for well over 80 per cent of the increase in climate forcing from long-lived gases each year,” Butler said. “It is also very long lived, with around one-fifth of what is emitted hanging around for at least 1,000 years.” Yet as burning oil, natural gas and coal, which produces CO2, propels modern life, cutting the amount we use enough will take some time. “In the meantime there are other gases that could and probably should receive attention,” Butler underlined.

Stephen Montzka of NOAA, along with colleagues Butler and Ed Dlugokencky, looked at exactly how these gases have been affecting climate in top scientific journal Nature this week. Monitoring and evaluating these gases helps show how humans are affecting their levels in the atmosphere. It also serves as a check on the results of claimed emissions. Unfortunately, the amount countries say they produce and levels recorded at observatories across the world disagree. However, Butler noted that no approach is perfect, and that at least comparing the two gave them some idea how far out they were. “The beauty of comparing the two is that each relies on completely different measurements, procedures and assumptions,” he said. Read the rest of this entry »

Soot and methane cuts promise threefold benefits

Vehicles are a significant source of black carbon and other pollutants in many countries. Credit: Caramel/flickr

Vehicles are a significant source of black carbon and other pollutants in many countries. Credit: Caramel/flickr

Limiting methane and soot emissions would save lives and keep farming output high, as well as playing an important role in fighting global warming. That’s according to some 70 scientists who have reviewed the available research on these substances for the United Nations Environment Partnership (UNEP). Such cuts were also surprisingly feasible, with just 16 ways of limiting emissions providing about 90 percent of the possible climate benefit from a list of 2000 control measures.

“We estimate that adoption of the 16 control measures we considered would save about 2 million lives a year and save 50 million tons of crops a year,” said NASA’s Drew Shindell, who led the project. “For climate, putting control measures in place could eliminate about half the warming we’ll otherwise face over the next 40 years.” Read the rest of this entry »