When the climate change fight got ugly

  • Steve Schneider talks about climate and energy with Johnny Carson on the Tonight Show in 1977, early on in his efforts to bring human-caused climate change to the public's notice.

    Steve Schneider talks about climate and energy with Johnny Carson on the Tonight Show in 1977, early on in his efforts to bring human-caused climate change to the public’s notice.

    This is part two of this profile. Read part one here.

“How many of you think the world is cooling?” That’s what Steve Schneider asked the studio audience of the Tonight Show with Johnny Carson in September 1977. And when the majority put their hands up, he explained that the recent cooling trend had only been short-term. Though the unscripted poll meant Steve wasn’t invited back to the programme, through the summer of that year he had brought climate science to US national TV. The appearances typified Steve’s efforts to bring climate change to the world’s notice – efforts that would later draw attention of a less desirable sort.

Building on his earlier high profile research, Steve had just published ‘The Genesis Strategy: Climate and Global Survival’, predicting ‘demonstrable climate change’ by the end of the century. Whether human pollution would cause warming or cooling, he argued governments should copy the biblical story where Joseph told Pharoah to prepare for lean years ahead. In a decade already torn by rocketing food and oil prices, the advice resonated with many who wanted to head off any further crises.

Some scientists criticised Steve and those like him for speaking straight to the public. In particular, climate science uncertainties were so great that they feared confusion – like that over whether temperatures were rising or falling – was inevitable. That dispute grew from a basic question about science’s place in society. Should researchers concentrate on questions they can comfortably answer using their existing methods? Or should they tackle questions the world needs answered, even if the results that follow are less definite?

At a meeting to discuss climate and modelling research within the Global Atmospheric Research Programme (GARP) in 1974 near Stockholm, Sweden, Steve pushed for the second approach. Given the food problems the world was struggling with at the time, it seemed obvious that climate change impacts like droughts, floods and extreme temperatures would bring famines. “I stood alone in arguing that we had to consider the implications of what we were researching,” Steve later wrote. While some attacked him angrily, saying they weren’t ready to address these problems, conference organiser Bert Bolin agreed that socially important questions must be answered.

The suggestion was also controversial because it meant blurring the lines between climate science and other subjects, such as agriculture, ecology and even economics. The director at the US National Center for Atmospheric Research (NCAR) in Boulder, Colorado, where Steve worked, warned that crossing subject boundaries might cost him promotion. But he responded with characteristic wilfulness, founding a journal doing exactly what he was warned not to. Read the rest of this entry »

Stark conclusions seek to empower young to sue for climate justice

Jim Hansen (bottom left) and his family. For their benefit, and for the next generation as a whole, he is pushing for more urgent action on global warming. Credit: James Hansen

Jim Hansen (bottom left) and his family. For their benefit, and for the next generation as a whole, he is pushing for more urgent action on global warming. Credit: JimHansen

Even limiting human-made global climate warming to 2°C above preindustrial temperatures would subject young people, future generations and nature to irreparable harm, leading scientists said on Tuesday. The team led by pioneering climate researcher Jim Hansen, now at Columbia University in New York, calls aiming for this internationally-recognised threshold ‘foolhardy’. In a paper published in PLOS ONE, they outline a case for aiming for 1°C that supports efforts to sue the US government for not doing enough.

“Governments are blatantly failing to do their job,” Jim told me. “They know that human-caused climate change is beginning and poses a huge risk to young people and future generations, and they understand that we must phase out fossil fuel emissions. Yet they go right ahead encouraging companies to go after every fossil fuel that can be found!”

As one of the first climate modellers, Jim has long warned about the greenhouse effect caused by the CO2 we emit from burning fossil fuels. On a sweltering June 23, 1988, he famously testified to the Energy and Natural Resources Committee of the US Senate on the dangers of global warming. “It’s time to stop waffling so much and say that the evidence is pretty strong that the greenhouse effect is here,” he told reporters at the time.

Yet Jim remains frustrated at the slow pace of action, and regularly voices it. In 2006 Mary Wood from the University of Oregon Law School saw one of his articles in the New York Review of Books and contacted him. Her work inspired the formation of a team of lawyers who are suing the US federal government, highlighting the principle that US citizens, young and old, have ‘equal protection of the laws’. “I agreed specifically to write a paper that would provide the scientific basis for legal actions against governments for not doing their job of protecting the rights of young people,” Jim recalled. Read the rest of this entry »

Tundra plants show modern temperatures unmatched in over 44,000 years

Gifford Miller collects vegetation samples on Baffin Island. Credit: University of Colorado, Boulder.

Gifford Miller collects vegetation samples on Baffin Island. Credit: University of Colorado, Boulder.

Tiny plants in Arctic Canada have shown that average summer temperatures there over the last 100 years are higher than those during any century for over 44,000 years. Gifford Miller from the University of Colorado, Boulder, and his teammates collected plants perfectly preserved but recently revealed by rapidly retreating ice sheets. The temperature findings are especially surprising as around 10% more energy from the sun fell on the Northern half of the planet 5,000 years ago than today.  And by looking at other scientists’ historical temperature records, they think the last time temperatures were as warm as today was likely around 120,000 years ago. “This adds to the growing consensus that the greenhouse gases we’ve added to the atmosphere have made a very large difference to the planet’s energy balance,” Gifford told me.

Scientists have known receding glaciers on Baffin Island are revealing well-preserved moss and lichen for almost 50 years. Gifford first read about it during his PhD, which he completed in 1975, in a paper written by a Canadian Department of Mines and Technical Surveys employee in 1966. “I had been to that site in 1981, found where he’d built a camp at the ice edge, measured how far the ice had disappeared and found plants coming out,” he recalled. “I’d repeated what he had done, but hadn’t done anything else with it. But as the ice is melting a lot right now we hypothesised that this wasn’t an isolated case.”

Glaciers don’t usually preserve what’s underneath them. “It’s almost counterintuitive to some people – you think of ice doing some damage to the landscape,” Gifford said. “But ice doesn’t move on its own, it’s driven by gravity. Where it’s flat, there’s not a whole lot of gravity pushing it, and if the ice is fairly thin and cold it’s an exquisite preservation agent. They’re frozen solid when they’re under the ice, which is very cold, like -14°C.” Sites like that can be hard to get to, as many are on plateaus high above Baffin Island. “You could mount climbing expeditions and spend a week getting to one site, so really there’s no practical way to get up there, except to have very good weather and a helicopter,” the scientist added. Read the rest of this entry »

Braving African piracy reveals abrupt rainfall shifts

Woods Hole Oceanographic Institution's Jessica Tierney has patiently produced a record of rainfall in East Africa reaching back 40,000 years, from sediment collected from pirate- and extremist-infested waters. Image copyright: Tom Kleindinst, Woods Hole Oceanographic Institution

Woods Hole Oceanographic Institution’s Jessica Tierney has patiently produced a record of rainfall in East Africa reaching back 40,000 years, from sediment collected from pirate- and extremist-infested waters. Image copyright: Tom Kleindinst, Woods Hole Oceanographic Institution

Having dodged pirates and extremists, and slogged for two years to interpret the record collected, US scientists have shown how abruptly rainy climates in East Africa come and go. Jessica Tierney puzzled out a rainfall record back to the last ice age from mud collected in one of the last research cruises to brave the Horn of Africa. “The region goes from being pretty humid to very arid in hundreds of years,” Jessica, who works at Woods Hole Oceanographic Institution (WHOI) in Massachusetts, told me. “That’s important because there’s a threshold behaviour in its rainfall. We need to better understand what drives those thresholds, and when we’d expect to be pushed over one, as it has huge implications for predicting drought and famine in the region.”

Long interested in ancient East African climate, Jessica wanted to study the Horn of Africa area, which includes Ethiopia and Somalia, because the climate there is very sensitive and variable. But its dry conditions rule out many options scientists use to build historical records from ice, cave deposits, sediments from lake beds or tree rings. So in 2010, she started working with Peter deMenocal at Lamont-Doherty Earth Observatory in New York, who collected sea bed sediments from the area in April and May 2001.

“We boarded ship in Dar Es Salaam in Tanzania and our cruise was to end in Port Said, in Egypt,” Peter told me. That took the team down the Somali coast and into the Gulf of Aden, where a few months earlier suicide bombers killed 17 sailors aboard the USS Cole. Though the scientists were worried, the captain of their Dutch research ship, R/V Pelagia was vigilant. “He had ordered radio silence, and we actually turned off all our lights on the ship at night, even navigation lights,” Peter recalled. “He had also put in orders for us to train on what to do in case we were boarded.”

Read the rest of this entry »

How ocean data helped reveal the climate beast

Wally Broecker's famous quote on display at California Academy of Sciences.  Image copyright: Jinx McCombs, used via Flickr Creative Commons license

Wally Broecker’s famous quote on display at California Academy of Sciences. Image copyright: Jinx McCombs, used via Flickr Creative Commons license

  • This is part two of a two-part post. Read part one here.

On the wall of Wally Broecker’s building at the Lamont-Doherty Earth Observatory hangs a 16-foot long terry-cloth snake, blue with pink spots, that he calls the ‘climate beast’. Left in his office as a surprise by his workmates, its name refers to one of Wally’s most powerful quotes about the climate: “If you’re living with an angry beast, you shouldn’t poke it with a sharp stick.”

Today, the sharp stick is the CO2 we’re emitting by burning fossil fuels, which Wally was warning about by 1975. By that time he had also helped confirm that throughout history, changes in Earth’s orbit have given the climate beast regular kicks, triggering rapid exits from ice ages. He became obsessed with the idea that climate had changed abruptly in the past, and the idea we could provoke the ‘angry beast’ into doing it again.

Among the many samples that Wally was carbon dating, from the late 1950s onwards he was getting treasure from the oceans. Pouring sulphuric acid into seawater, he could convert dissolved carbonate back into CO2 gas that he could then carbon date. And though nuclear weapon tests had previously messed with Wally’s results, they actually turned out to help improved our knowledge of the oceans. The H-bomb tests produced more of the radioactive carbon-14 his technique counts, and as that spike moved through the oceans, Wally could track how fast they absorbed that CO2.

In the 1970s, as Wally and a large team of other scientists sailed on RV Melville and RV Knorr tracking such chemicals across the planet’s oceans, a debate raged. Was cutting down forests releasing more CO2 than burning fossil fuels? Dave Keeling’s measurements showed the amount of CO2 being added to the air was about half the amount produced by fossil fuels. But plants and the oceans could be taking up huge amounts, scientists argued. Thanks to the H-bomb carbon, Wally’s team found the CO2 going into the oceans was just 1/3 of what fossil fuels had emitted. Faster-growing plants therefore seemed to be balancing out the impact of deforestation, and taking up the remaining 1/6 portion of the fossil fuel emissions. Read the rest of this entry »

The joker who brought climate science out of the cold

Wally Broecker, when he registered for the Columbia University geology department in 1953. Credit: Department of Earth and Environmental Engineering Archives, Columbia University

Wally Broecker, when he registered for the Columbia University geology department in 1953. Credit: Department of Earth and Environmental Engineering Archives, Columbia University

In Los Angeles on September 1 1955, the day temperatures reached a new record of 43°C, Wally Broecker stood, sweating, giving the first scientific talk of his life. He could scarcely have guessed where the new method he was telling an audience of sleepy archaeologists about, called radiocarbon dating, would send him. But thanks in part to its messages from history he would help spawn the phrase ‘global warming’ and warn of its effects, which have today pushed temperatures even higher.

Wally grew up and started college on the outskirts of Chicago, Illinois, good at maths, but largely uninterested in science. But college-mate Paul Gast steered his career sciencewards by helping get him a summer job at the new Lamont Geological Observatory that Paul had recently started working at. On June 15, 1952 Wally and pregnant wife Grace drove 800 miles to the Palisades, New York mansion Columbia University had inherited, and set up the observatory in. There, in the basement, Wally worked in and soon practically ran Laurence Kulp’s radiocarbon lab. Rather than lose him at the end of the summer Laurence organised for Wally to transfer to Columbia and stay working at Lamont, where he has remained ever since.

Taking advantage of the slow decay of a rare, radioactive form of carbon – carbon-14 – radiocarbon dating was in its infancy. The balance between carbon-14 and the usual form, carbon-12, is quite steady in CO2 in the air, and also in living plants that take up the gas as they grow. But when plants die, the carbon-14 they contain slowly decays to nitrogen. Measuring the ratio between the two forms of carbon, scientists can tell when the plants had died. But in 1952, Laurence’s lab was getting inconsistent readings, with carbon-14 counts sometimes coming out too high, even after Wally had fixed a problem with the equipment. Then Wally realised the problem came from outside the lab. The extra counts were coming from nuclear tests that had recently started over Nevada.

Read the rest of this entry »

Alternate histories back unique modern warmth claims

Tree rings have a light-colored band, or earlywood, that forms in the spring and a dark-colored band, or latewood, that forms in the summer. The width of the band tells how much the tree grew during that period and therefore can be used as a proxy for the climate during that season. That approach has some uncertainties, but Martin Tingley and Peter Huybers have reduced their impact on telling if any year is the warmest. Credit: thaths via Flickr Creative Commons license

Tree rings have a light-colored band, or earlywood, that forms in the spring and a dark-colored band, or latewood, that forms in the summer. The width of the band tells how much the tree grew during that period and therefore can be used as a proxy for the climate during that season. That approach has some uncertainties, but Martin Tingley and Peter Huybers have reduced their impact on telling if any year is the warmest. Credit: thaths via Flickr Creative Commons license

If you build a temperature record going back in time to judge modern warming against, how certain can you be of your answer? That’s a big question for scientists making such records from effects temperatures have had on the natural world. And figuring out if today’s heat is unique is too great a challenge for the methods scientists normally use to calculate uncertainty, according to Harvard University’s Martin Tingley.

But Martin and Peter Huybers have shown the precise chances that northern areas of the world are warmer than any time in rebuilt records reaching back to the year 1400. They have worked out that there’s less than one chance in 20 that 2005, 2007, 2010 and 2011’s northern summers weren’t the warmest in that time. They also find that summer 2010 has a 99% chance of being the warmest western Russia has seen. There have already been lots of claims made over the unusualness of recent warmth, Martin pointed out, but his and Peter’s are the most robust yet. “We put these estimates on a much sounder statistical footing,” he told me.

Saying one year’s summer is uniquely warm across a long period is difficult for subtle reasons that Martin explained through his height. “I’m a tall guy, 6 foot 4 inches,” he said. “I’ve never met you, but I’m going to bet I’m taller than you. What’s the intuition behind my bet? We have a sense of the distribution of heights. I’m aware I fall pretty far out on the tail, so the chances are if I meet an average person they don’t fall further out than I do. What if I’m in a room with 1,000 people I’ve never met before? Am I still likely to be the tallest in the room? Probably not.” Read the rest of this entry »

Temperature patterns produce perplexing Pliocene puzzle

Lafayette College's Kira Lawrence and her teammates have used ocean bed sediment cores, like this one, to produce a 5 million year climate record. © Intergrated Ocean Drilling Program

Lafayette College’s Kira Lawrence and her teammates have used ocean bed sediment cores, like this one, to produce a 5 million year climate record. © Intergrated Ocean Drilling Program

US, UK and Hong Kong Researchers have produce a unique ‘movie’ of climate reaching back 5 million years, by bringing together data drilled from ocean beds. It reveals three important temperature patterns during the warm early part of the Pliocene period that they couldn’t recreate together in climate models using existing explanations. That’s important because scientists hope the Pliocene could help us know what the future of a warmer Earth might be like. And having uncovered another layer to the Pliocene puzzle, team member Kira Lawrence from Lafayette College in Easton, Pennsylvania, underlined the value of finding its solution.

“Our community of scientists think of the Pliocene as though it was about 3°C warmer than modern temperatures with CO2 concentration about where we are right now,” Kira told me. “But we haven’t recognised before that the pattern of temperature was a lot different. If that’s where we’re headed in the not too distant future, if the temperature and precipitation patterns change in that way, we should have some significant things to think about.”

The Pliocene period started 5.3 million years ago, during which primates made important evolutionary steps towards humanity. Since 2000, there has been a climate data explosion reaching back through this era. Around the world, international drilling expeditions have pierced ocean beds kilometres below sea level, reaching hundreds of metres into sediment to bring back ‘core’ samples. Tiny fossils within that rock and mud can tell scientists temperatures through history, which can give climate scientists real data to test their models against.

Read the rest of this entry »

Projected warming set to exceed civilisation’s experience

Oregon State University's Shaun Marcott has built a climate record reaching back 11,300 years, showing that today's temperatures are warmer than at least 70% of that period. Credit: Shaun Marcott

Oregon State University’s Shaun Marcott has built a climate record reaching back 11,300 years, showing that today’s temperatures are warmer than at least 70% of that period. Credit: Shaun Marcott

The world is headed for average surface temperatures warmer than it has seen in at least 11,300 years. That’s one conclusion US researchers have reached after bringing together 73 studies of ancient climate from across the world into a single global record. Their work supports previous records for the past 2,000 years built mainly from tree ring data, explained Shaun Marcott from Oregon State University, and gives a much broader view.

“We can put today’s global temperature into context against the entire Holocene period,” Shaun told me. “That’s when human civilisation was born, developed and progressed to today.” Modern temperatures are higher than in around three-quarters of that period, which reaches back to the end of the last ice age. And their comparison against forecasts for 2100 made in models used by the Intergovernmental Panel on Climate Change (IPCC) is even starker. “If those scenarios come to fruition, we’ll be well outside anything human civilisation has seen,” Shaun warned. “We won’t have even have been close.”

Knowing climate’s history helps understand its present, and so researchers have puzzled out temperatures on the Earth’s surface from proxy, or indirect, records for the last 2,000 years. In particular, bringing together measurements from tree rings, ice and coral has showed a sharp recent temperature rise often referred to as the ‘hockey stick’. Meanwhile, studies scattered across the world had reached back across the 11,300 years since the beginning of the Holocene. But they can be influenced by regional effects, and no one had pieced them into a global view that would overcome that. Read the rest of this entry »

Evidence rethink puts CO2 and ancient warming back in sync

A thin layer of ice from an area of the Antarctic where ancient ice records are collected, in polarized light that reveals ice crystals. Rethinking how ice crystal formation affects ancient data collection is helping to solve an outstanding climate puzzle. © Frédéric Parrenin

A thin layer of ice from an area of the Antarctic where ancient ice records are collected, in polarized light that reveals ice crystals. Rethinking how ice crystal formation affects ancient data collection is helping to solve an outstanding climate puzzle. © Frédéric Parrenin

A different way to dig up links between past levels of CO2 in the air and temperatures could solve a troubling question over the historical climate. Previously, data collected from long cylinders drilled from Antarctica’s ice sheet seemed to show temperatures rising hundreds of years before CO2 levels did. If ancient warming came before a CO2 rise, then the greenhouse gas seemingly couldn’t have caused the warming. Climate skeptics have used this to argue  that the CO2 we produce today isn’t causing global warming.

Now, Frédéric Parrenin at the French National Centre for Scientific Research in Grenoble and his teammates have used a different method on these cylindrical ice cores. They say that their approach shows CO2 and temperature rises happened together during the last ‘deglaciation’, when ice sheets retreated during an abrupt warming period 20,000-10,000 years ago. “This makes it possible that CO2 was actually a cause of warming corresponding to the last deglaciation,” Frédéric told me.

Scientists have been using Antarctic ice cores, and bubbles of air from the time the ice formed trapped inside, to study climate history for over 30 years. The time capsule-like bubbles show what chemicals were in the air. Meanwhile, the amounts of different forms, known as isotopes, of elements like hydrogen, carbon and oxygen in the ice reveals the temperature it formed at. And finally, scientists figure out how old the ice and bubbles are from how deep they are in the core – and that’s where Frédéric found problems. Read the rest of this entry »

Follow

Get every new post delivered to your Inbox.

Join 160 other followers