CO2 emissions drive heatwaves on despite warming ‘hiatus’

A measurement taken on a shaded back deck in Oswego, Oregon on July 29, 2009 at 6pm. 41.3°C or 106.34°F - just one example of increasingly common hot summers in the Northern Hemisphere. Image copyright  Sean Dreilinger used via Flickr Creative Commons licence.

A measurement taken on a shaded back deck in Oswego, Oregon on July 29, 2009 at 6pm. 41.3°C or 106.34°F – just one example of increasingly common hot summers in the Northern Hemisphere. Image copyright Sean Dreilinger used via Flickr Creative Commons licence.

Human influence on climate is set to make otherwise unusually hot summers in the Northern Hemisphere more frequent, even if the current warming slowdown continues. That finding, from a new study by Youichi Kamae from the National Institute for Environmental Studies in Tsukuba, Japan, and his colleagues, could now heat up climate talks. “The recent hot summers over land regions and the climate hiatus have opposite effects on ongoing global negotiations for climate policies,” Youichi underlined. “The findings of this study can have significant implications for policy makers.”

Over the past 15 years, growing ‘anthropogenic’ or human-emitted CO2 hasn’t turned into significant average temperature rises on the Earth’s surface. The top levels of the oceans haven’t warmed significantly either, even though heat is still building up deeper down. However in that time sometimes deadly hot summers have become more common in Earth’s northern half. It’s not clear how that’s happening without average temperatures increasing faster. One possible part of the explanation could be a fast response to greenhouse gas emissions that Youichi and other scientists had previously found. “The fast response over can largely be interpreted as direct land surface warming due to CO2,” Youichi told me.

The Japanese team’s search for a better explanation had a big question at the centre: How much of this climate change is natural, and how much is man-made? Not able to easily experiment on the planet to investigate, they did what climate scientists usually do for such ‘attribution studies’, and turned to computer models. Simulating the world with and without human greenhouse gas emissions and comparing the results, scientists are increasingly trying to pinpoint whether climate change directly caused particular extreme weather events. They’re trying to build up lots of evidence about a single event to be sure that their result isn’t random, and that takes lots of computer time and power. Read the rest of this entry »

Advertisements

Unique and unnatural: modern warming from an historical viewpoint

A Roman altar with the Sun in its chariot on the left, and Vulcan, the god of fire and volcanoes on the right. The climate gods long favoured the Roman Empire, with wobbles in Earth's orbit credited for increasing the amount of solar energy falling on Earth at the time. Image copyright: Nick Thompson, used via Flickr Creative Commons License.

A Roman altar with the Sun in its chariot on the left, and Vulcan, the god of fire and volcanoes on the right. The climate gods long favoured the Roman Empire, with Earth’s orbital dance credited for increasing the amount of solar energy falling on Earth at the time. Image copyright: Nick Thompson, used via Flickr Creative Commons License.

Our climate has changed before. It’s something most of us realise and can agree on and, according to Skeptical Science, it’s currently the most used argument against human-caused warming. If such changes have happened naturally before, the argument goes, then surely today’s warming must also be natural. It’s an appealing idea, with an instinctively ‘right’ feel. Nature is so huge compared to us puny humans, how can we alter its course? The warming we’re measuring today must just be a natural fluctuation.

It’s such an appealing argument that at the beginning of the 20th century that’s just what many scientists thought – that humans couldn’t alter Earth’s climate. In the time since, our knowledge has come a long way. We’ve explored space, become able to build the electronics that are letting you read this, and climate science has likewise advanced and benefited from these advances.

So what do we know today that might convince the sceptical scientists of 115 years ago that we’re warming the planet? Recently, Richard Mallett, one of my Twitter friends who describes himself as sceptical about mainstream climate science, made a point that serves as an excellent test of our current knowledge:

Of the historical warmings he’s referring to, perhaps the least familiar is the Holocene, which is ironic, as the Holocene is now. It’s the current period of geological time that started at the end of the last ice age, 11,700 years ago. By 1900 scientists would have known the term, but they couldn’t explain why it wasn’t as icey as before.

Three variables of the Earth’s orbit—eccentricity, obliquity, and precession—affect global climate. Changes in eccentricity (the amount the orbit diverges from a perfect circle) vary the distance of Earth from the Sun. Changes in obliquity (tilt of Earth’s axis) vary the strength of the seasons. Precession (wobble in Earth’s axis) varies the timing of the seasons. For more complete descriptions, read Milutin Milankovitch: Orbital Variations Image credit: NASA/Robert Simmon.

Three variables of the Earth’s orbit—eccentricity, obliquity, and precession—affect global climate. Changes in eccentricity (the amount the orbit diverges from a perfect circle) vary the distance of Earth from the Sun. Changes in obliquity (tilt of Earth’s axis) vary the strength of the seasons. Precession (wobble in Earth’s axis) varies the timing of the seasons. For more complete descriptions, read Milutin Milankovitch: Orbital Variations. Image credit: NASA/Robert Simmon.

The explanation we have today comes thanks to the calculations Milutin Milanković worked out by hand between 1909 and 1941. Milutin showed that thanks to the gravitational pull of the Moon, Jupiter and Saturn, Earth’s orbit around the Sun varies in three ways. Over a cycle of roughly 96,000 years our path varies between more circular and more oval shapes. The other two ways come because Earth’s poles are slightly tilted relative to the Sun’s axis, which is why we have seasons. The angle of that tilt shifts over a roughly 41,000 year cycle. Earth also revolves around that tilted axis, like a spinning top does when it slows down, every 23,000 years.

Together these three cycles change how much of the Sun’s energy falls on and warms the Earth, in regular repeating patterns. Though that idea would be the subject of much controversy, by the 1960s data measured from cylinders of ancient ice and mud would resolve any doubt. The slow descent into ice ages and more abrupt warmings out of them – like the one that ushered in the Holocene – come from Earth’s shimmies in space. Read the rest of this entry »

The urgent voice who refused to be silenced on climate danger

  • This is part three of this profile. Read part one here and part two here.
In response to the revelations of his ongoing research, NASA scientist Jim Hansen has become increasingly active in campaigning to halt climate change over the past decade. Image credit: Greenpeace

In response to the revelations of his ongoing research, NASA scientist Jim Hansen has become increasingly active in campaigning to halt climate change over the past decade. Image credit: Greenpeace

By December 6, 2005, NASA Goddard Institute of Space Studies’ (GISS) temperature record was already sending a clear message: worldwide, 2005 would likely be the warmest year so far. For GISS director Jim Hansen, speaking to the annual American Geophysical Union conference, arguably the world’s largest environmental research meeting, it seemed fair to reveal. For several listening journalists it was newsworthy enough for them to cover Jim’s talk. But it would anger some of Jim’s colleagues at NASA headquarters enough to try to stop him talking to the media. In the process they’d drag him outside the world of pure research he was most comfortable in. “The undue influence of special interests and government greenwash pose formidable barriers to a well-informed public,” Jim would later write about the situation. “Without a well-informed public, humanity itself and all species on the planet are threatened.”

The comments came during a lecture in honour of Dave Keeling, the CO2 tracking pioneer, who’d died of a heart attack in June that year. Soothing Jim’s hesitation, Dave’s son Ralph stressed he was continuing the work of his father, who had even been discussing one of Jim’s papers minutes before his death. And so Jim had brought together evidence showing that Earth’s climate was nearing a ‘tipping point’ beyond which it will be impossible to avoid dangerous changes. However, warming from 2000 onwards might still be kept below the 1°C level that Jim at that time considered hazardous if CO2 levels in the air were held at about 450 parts per million (ppm). Emissions of other greenhouse gases would also need to be significantly reduced. The message was clear: how we get our energy would must change, mainly by shifting away from coal and the vast volumes of CO2 burning it produces.

NASA headquarters was already reviewing all publicity on climate change research, but the latest coverage would force it into even more severe action. The following week it laid out new restrictions on Jim’s ability to comment publicly, and the global GISS temperature record was temporarily taken off the internet. Prominent amongst those setting the new conditions was NASA’s new head of public affairs, appointed by George Bush’s administration, David Mould. His previous jobs included a senior media relations role at the Southern Company of Atlanta, the second largest holding company of coal-burning power stations in the US. Only one company had donated more to the Republican Party than the Southern Company during George Bush’s 2000 election campaign: Enron. Read the rest of this entry »

How lessons from space put the greenhouse effect on the front page

Normally during a total lunar eclipse, like this one on April 15, 2014, you can still see the moon, but in 1963 Normally during a total lunar eclipse, like this one on April 15, 2014, you can still see the moon, but in 1963

Normally during a total lunar eclipse, like this one on April 15, 2014, you can still see the moon, but in 1963 Jim Hansen saw it disappear completely. Explaining why would send him on a scientific journey to Venus, before coming back down to Earth. Image credit: NASA

Jim Hansen’s life changed on the evening the moon disappeared completely. In a building in a cornfield Jim and fellow University of Iowa students Andy Lacis and John Zink, and their professor Satoshi Matsushima, peered in surprise through a small telescope into the wintry sky. It was December 1963, and they had seen the moon replaced by a black, starless circle during a lunar eclipse. The moon always passes into Earth’s shadow during such eclipses, but usually you can still see it.

At first they were confused, but then they remembered that in March there had been a big volcanic eruption. Mount Agung in Indonesia had thrown tonnes of dust and chemicals into the air: perhaps that was blocking out the little light they’d normally have seen? With a spectrometer attached to their telescope they measured the moon’s brightness, data Jim would then base his first scientific research on. Using this record to work out the amount of ‘sulphate aerosol’ particles needed to make the moon disappear, Jim began a lifelong interest in planets’ atmospheres. That would lead him to become director of the NASA Goddard Institute of Space Studies (GISS), where he has led the way in exposing the threat from human CO2 emissions.

Jim was born in Iowa in 1941, the fifth of seven children of a farmer, who had left school at 14, and his wife. As he grew up they moved into the town of Denison, his father becoming a bartender and his mother a waitress, and Jim spending his time playing pool and basketball. Jim claims he wasn’t academic, but found maths and science the easiest subjects, always getting the best grades in them in his school. Though his parents divorced when he was young, public college wasn’t expensive at the time, meaning Jim could save enough money to go to the University of Iowa.

The university had an especially strong astronomy department, headed by James Van Allen, after whom brackets of space surrounding the Earth are named. These ‘Van Allen Belts’ are layers of particles that he discovered, held in place by the planet’s magnetic field. Satoshi Matsushima, a member of Van Allen’s department, could see Jim and Andy’s potential and convinced them to take exams to qualify for PhD degrees a year early. Both passed, with Jim getting one of the highest scores, and were offered NASA funding that covered all their costs.

A few months later, it was Satoshi who suggested measuring the eclipse’s brightness, feeding Jim’s interest in atmospheres on other planets. “Observing the lunar eclipse in 1963 forced me to think about aerosols in our atmosphere,” Jim told me. “That led to thinking about Venus aerosols.” In an undergraduate seminar course Jim had given a talk about the atmospheres of outer planets, which James Van Allen had attended. The elder scientist told him that recently measured data was suggesting Venus’ surface was very hot. Aerosols stopped light reaching the Earth during the eclipse – could they be warming up Venus by stopping heat escaping, Jim wondered? That would become the subject of his PhD, and Satoshi and James Van Allen would be his advisors. Read the rest of this entry »

Climate change-boosted disease could endanger China’s food supply

Wheat ear infected with Fusarium ear blight (FEB), giving the ear a pinkish color. The disease could be set to increase in countries like China and the UK with climate change, Bruce Fitt and his teammates have found, suggesting resistant varieties should be developed. Photo credit: CIMMYT.

Wheat ear infected with Fusarium ear blight (FEB), giving the ear a pinkish color. The disease could be set to increase in countries like China and the UK with climate change, Bruce Fitt and his teammates have found, suggesting resistant varieties should be developed. Photo credit: CIMMYT.

As the planet warms, China’s wheat crops will be threatened by more frequent epidemics of ‘fusarium ear blight’ (FEB), scientists in the UK and China have projected. Bruce Fitt from the University of Hertfordshire in Hatfield, UK, and his teammates forecast levels of the disease in the Anhui and Hubei provinces from 2021-2050. Whereas in the worst affected regions in 2001-2010 around one-sixth of all ears were infected, this was the lowest disease level the researchers found in their future scenario. In the worst-hit areas, FEB infected more than a third of all ears. “This has implications for crop breeding because it takes 10-15 years to breed a new cultivar,” Bruce told me. “If you know the disease is going to become more important then you need to get on and start breeding now rather than waiting until the disease hits you.”

Today, over a billion people don’t have enough to eat, and further population growth and climate change are set to put the world’s food supplies under even greater strain. To help ease that pressure, Bruce and other scientists are working to understand and help improve control of crop diseases like FEB. While some crop diseases will worsen in the future, not all will, he stressed. “For example, you might have a disease that is spread by rainsplash in summer and then it’s predicted that there will be far less rainfall in summer,” he explained. “Then you would expect that with climate change the importance of that disease would diminish.” If governments, farmers and seed suppliers know which diseases are likely to get worse, they can prioritise developing strategies to contol them, like breeding disease resistant varieties.

To make useful forecasts for which diseases will worsen, scientists build models that include weather data, how crops grow and how the disease pathogen spreads through the crop. “In this particular instance the wheat is susceptible only at flowering,” Bruce said. “It may be in flower for a few days. If it doesn’t get the pathogen inoculum and the right weather conditions at that time it will not get the disease.” Climate change can both alter flowering times and the chances of warm, wet weather that make infection more likely. When wheat gets infected, even if it can be harvested it is more likely to contain poisonous mycotoxins. “If it’s full of mycotoxins then it can’t be eaten by man or beast, so it’s just wasted,” Bruce added. Read the rest of this entry »

Detailed regional data reduce warming-drought link doubts

Sergio Vicente-Serrano and his team have shown that warming is driving more severe and widespread droughts on the Iberian Peninsula, even in this river plain landscape near Aguilar de Campoo in northern Spain Image Credit: tracX via Flickr Creative Commons license

Sergio Vicente-Serrano and his team have shown that warming is driving more severe and widespread droughts on the Iberian Peninsula, even in this river plain landscape near Aguilar de Campoo in northern Spain Image copyright: tracX, used via Flickr Creative Commons license

Spanish and Portuguese researchers have produced some of the strongest evidence yet that warming climate is making droughts more severe. Sergio Vicente-Serrano from the Pyrenean Institute of Ecology (IPE) in Zaragoza and his colleagues have used detailed data from their countries to overcome uncertainties seen in worldwide studies. They have shown that a local warming of 1.5°C from 1961-2011, and 2.1°C in summer months, and rainfall that has decreased by around a sixth increased drought severity in the region. “Future scenarios in the Iberian Peninsula and southern Europe indicate an increase of temperature even more than 3°C for the 21st century,” Sergio told me. “If we have already observed an important decrease of water resources, you can imagine that in the future water resources in these regions will be at higher risk.”

Air holds and ‘demands’ more water as it gets warmer, which is a fundamental reason for why we might expect both worse droughts and heavier rainfall with climate change. Scientists have already used real-world measurements to look at global changes in drought severity. However, they have disagreed on whether things really have got worse in recent years or not. Sergio stressed that such worldwide research faces important limitations. He emphasised that evapotranspiration – the water released by Earth’s surface and by plants breathing – is important in drought studies. But it has to be worked out from a combination of direct measurements, and the records needed are patchy in areas like Africa or South America.

“I’m very critical of the conclusions of these kinds of global studies, not about the methodology, but the input data,” Sergio said. “The problem is the use of highly uncertain variables. There are problems with precipitation data sets in terms of density of observations. The problems for precipitation are much higher for variables that are necessary to estimate the water demand of the atmosphere. Estimating these kinds of variables with confidence is really difficult. Also, there’s no validation in terms of impact on crop production, stream flows, reservoirs, soil moisture, this information is not available. That’s really the approach that must be followed to determine if drought is increasing in severity and impact.” Read the rest of this entry »

Weather extremes take twin crop and disease toll

Using MODIS data of red and infra-red emissions from the Earth's surface Assaf Anyamba and his colleagues can track conditions including temperature and levels of plant growth. In this shot the Normalized Difference Vegetation Index (NDVI) for southeast Australia from September to November 2010 shows that plants were thriving after a bout of extremely cool, wet weather. Image copyright: PLOSone, used via Creative Commons license, see reference below.

Using MODIS data of red and infra-red emissions from the Earth’s surface Assaf Anyamba and his colleagues can track conditions including temperature and levels of plant growth. In this shot the Normalized Difference Vegetation Index (NDVI) for southeast Australia from September to November 2010 shows that plants were thriving after a bout of extremely cool, wet weather. Image copyright: PLOSone, used via Creative Commons license, see reference below.

The wet and dry weather extremes the world felt between 2010 and 2012 caused wild variations in farm output and encouraged serious diseases spread by insects like mosquitoes. That’s according to scientists from NASA and the US Department of Agriculture (USDA) who studied severe droughts and rainfall that happened in six places during this period. Harvests in the four drought-stricken regions fell to as little as one-fifth of normal levels, but grew dramatically in the two rain-soaked areas, almost doubling in one case. But wet or dry, extreme conditions favoured certain species of mosquitoes (also known as vectors) that went on to cause outbreaks of illnesses like the potentially-fatal Rift Valley Fever. “Extreme weather events can have both negative and positive impacts,” observed NASA’s Assaf Anyamba. “For example eastern Australia and South Africa had bumper harvests of some crops but at the same time had outbreaks of vector-borne disease.”

Assaf and his coworkers help provide ways for the US government to closely monitor the whole world to see where droughts or wet periods might be happening. One way Assaf does this is with a pair of ‘eyes in the sky’ – NASA’s Terra and Aqua satellites. Each carries a Moderate Resolution Imaging Spectroradiometer, or MODIS, which precisely records the colours of the Earth’s atmosphere and surface, including those we can see and reaching far beyond. Scientists use the infra-red data it collects to track surface temperatures, while a combination of red and infra-red can tell them how leafy places are. From these, NASA makes this awesome ‘NDVI’ map of how well vegetated crop-growing regions across the world are, while the USDA includes them in monthly Rift Valley Fever risk reports.

While it’s important to know the impacts of extreme weather, not all countries are able to measure them. But from 2010 to 2012, the MODIS records captured the most intense set of weather they had recorded since Terra’s launch in 1999. The US, Russia, east Africa and southwest Australia endured droughts, and rain drenched South Africa and southeast Australia. Assaf and his team noticed that this weather was influencing both farming and disease in these cases, and decided to look at ‘the big picture’. “We wanted to showcase this connectedness as an example of the mixed bag of impacts anomalous weather conditions impose on society at large,” he explained. Read the rest of this entry »